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Why simulations are needed
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Empirical data are sparse for large subduction earthquakes
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Short distances and deep basins are poorly constrained
Simulations provide physics-based constraints
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Non-ergodic GMMs based on the 3-D simulation
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3.Epistemic uncertainty

Epistemic  uncertainty
for non-ergodic terms
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PSHA including
3D simulation results

e Spatial correlated adjustments
* Reduced aleatory variability
* Epistemic uncertainty



Challenge 1: Site and path effects

* All simulations correspond to a single M9 scenario Nonergodic term (Ayg)
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diversity for each site.
Need for validation using small earthquakes (M = 3-5).




Challenge 2: Limited resolution constrains

Group 1: Seattle region (1-km space)

Group 2: Outside Group1 (20-km space)

Group 3: Canada (1-km space)
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**Keep a common dense
site grid across scenarios**



Challenge 3: Epistemic uncertainty is underestimated
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Challenge 4: Physics-based

simulations are limited to long perlods

e 3D simulations constrainedto T= 2 sec

* High-frequency motions are 1D stochastic

simulations

* the basin/ path effects are not represented

* Limits applicability for engineering practice

** Validation using small earthquakes
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Figure 8. Comparison of the normalized basin factors from AG20 and from
the 3D simulations with the basin factors used by the Seattle Department of
Construction and Inspection (SDCI). The color version of this figure is
available only in the electronic edition.
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Annual hazard (1/yr)
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Conclusions

* Multiple rupture scenarios are required so that path averaging is
possible and site and path effects can be separated.

* A dense and consistent site grid, with spacing shorter than the
correlation length of nonergodic terms, must be used across all
scenarios to resolve site and basin effects rather than numerically
smoothing them out.

* Validation is required to evaluate the accuracy and reliable period
range of 3D simulations.

* Quantifying epistemic uncertainty requires ensembles of source
models and multiple alternative 3D velocity models, not a single
best-estimate model.
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