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Ground Motions in Probabilistic SeIiSMIC e os cingingwors
Hazard Analysis (PSHA)
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* PSHA consists of suites of
oredicted ground motions

* In WUS and Cascadia, ground-
motion models (GMMs) specify
ground motion (median and
standard deviation)

* Selecting and combining GMMs
has direct input on hazard
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Selecting, modifying, combining ground-motiﬁegﬁggé
models (GMMSs) for seismic hazard
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Ground-motion models (GMMSs) for Cascadia
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* Ground-motion modeling for
subduction earthquake benefits
. from NGA-Subduction project
ol * NGA-Sub GMMs take advantage

M=7.0, T=PGA s

of largest-available ground-

motion dataset, development
of functional forms

 Cascadia-regionalized site
response (VS30), basin effects,
anelastic attenuation

 Alternative models are included
through logic trees
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Impact of limited data in Cascadia for
Cascadia GMMs
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Global Site Terms (In units)
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* How (and why) does site
response in Cascadia differ

gi from other regions?

* What controls regional site
amplification? What is spatial
extent of these effects?

* Does site response vary with
source depth/type, azimuth,
other factors?
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Basin implementation, 2023 and 2018  scirwerractangingons
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Basin implementation, 2023 and 2018 sinwersctanging o
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Within-Event Total Residuals [In units]
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Portland/Tualatin Basin

* Basin model from National Crustal Model-
surfaces controlled by Columbia River Basalts
(Z1) and top of early Eocene basement (£2.5)

* I[nclude Portland/Tualatin basins

Portland Area Events, T=1s Portland Area Events, T=5s
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Basm effects from ground-motion S|mulat
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T e Basin amplifications from 3D
X e K ground-motion simulationsin
e Seattle basin (2023 NSHM)

= M9 Basin Factor of 2

in

Spectral Ratio
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= 4 uniformly within deepest parts of
Rezaeian et al. (2024): 2023 NSHM Seattle basin—no depth

dependence from simulation-
based ground motions
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N fe | S, and modeling basin amplification,
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Some outstanding questions/directions... a USGS
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* Slab ground-motion amplitudes: Will future subduction
intraslab earthquakes exhibit lower (than global) ground
— motions, similar to most recorded data?

— % MWC Upper plate crust o N .

o e \l * Interface ground-motion amplitudes: How will ground
o SN s shaking from future Cascadia me%athrust earthquakes

’ compare with earthquakes globally?

* What is the effect of warm, young subduction zone on ground
(6) Some very warm suixiuction zones motions? on presence and participation of deep high-stress-
drop events (SMGAs)?

(a) Most subduction zones

High-concentration o
patches cause SP ——> Antigorite-rich
radition? deep seismic zone

— MWC Upper plate crust . . .
e g * Simulations: How can we increasingly incorporate
- \ i simulations into Cascadia ground-motion modeling?
" baiches came. ——> amigorte e vesae Direct use of simulations is one long-term vision. Near-
future will probably employ simulations to modify GMMs
Wang (2025) or replace GMM components.

» Effect of subduction-zone geometry, basin amplification

* Finite-source effects: Parallel work to incorporate
directivity for crustal fault sources. What are
predominant effects of megathrust rupture directivity?
Are there preferred loci of rupture in Cascadia?
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