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Present Day Challenges for
Methodologies and Putting It All Together

* GMM Expressiveness of Complex Physical Phenomena

 Capture intricate physical effects (e.g., wave propagation in complex media)
while preserving physical scaling.

* Scalable Performance on Large Ground Motion Datasets
 Methodologies need to scale to > 1e6 recordings produced by simulations

* Learning from Inhomogeneous Data Sources
* Recognize differences between empirical and simulated datasets
* Mitigate simulation bias due to larger dataset size



Study Area: The Groningen Gas Field

Gas extraction
(Groningen, Netherlands)

Why Groningen:

Reservoir
Reservoir compaction

* Detailed 3D velocity model

-> wave-propagation
simulations

* Building and occupancy
data

-> risk analysis (next phase)

Basement
https://www.science.org/doi/full/10.1
126/science.aat2776

From Bomnﬁer et al (2022)
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o5 @Framework Is transferable to other regions with varying data types
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Ergodic Backbone Model

Followed ergodic backbone approach, adopting Bommer et al
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3D Velocity Model and Simulations:
ILluminating Path Effects
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Simulation Validation

Simulations performed in SPECFEM3D with point sources

* Validate input parameters with well-recorded real events
Adjustment of corner-frequency, source time function, and model

Verification: M=3.0, Rpp=5.6km
WINN-surface

Verification: M=3.0, Rnp=8.5km
MID1-surface 100w
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Production Simulations

* 98 3D point source simulations =B

e Spacedon5kmgrid .. r : = I 5555555
» Hypocenter depth: 3km R 1
* Max frequency: 7hz A
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Development of Path Kernel
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Scalability to Large Datasets

In Gaussian Processes, ground motion predictions are given by:
- - o
Yp = a; - Yt

Key Message.:
Far away ground motions do not mater for non-ergodic effects at site of interest
(i.e., negligible contribution -> sparse approximation)

/'/ /,/ 4 1

~
Ve

0‘\

e 0
L o5 g — 5

Covariance Structure a; structure



Approximation Scheme

Step 1 Screening Identify n,. recordings with highest correlation
* May contain redundant information

Step 2: Conditional Selection: Identify n; mutually most
informative

recordings using KL divergence

Complexity:
* Memory: O(N) + 0(n.log(n.)) + O(niz) Memory requirement for

» Computation: O(N) + 0(ng log(n.)) + O(nig)simulations dataset
For N > n.: Memory & Computation> O(N) 1oMB
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Example of Ground Motion Selection

Step 1 Screening
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Hybrid Dataset Regression Formulation

Non-ergodic effect decomposition (example for path effects)

Additional real effects

° Emp|r|cal- 5P2P - 5P2P + SPAZP/ not included in
simulations

e Simulation: 5p2p == 6p2p + Sp

\ “~ Simulations artifacts

(don’t want to propagate to

Real effects Predictions)

simulations can
capture

12



Hybrid Dataset Covariance

Implied Non-ergodic Variance/Covariance structure:

* Var(SPZP(f)) = Wp2p

* Var (SPZPO_C))) = Wpyp

* Cov (5P2P(3_C)): SPZPO_C))) = Wpp

We need to determine three scales instead the traditional one

Assumption: stationary simulations’ predictive performance
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Ground Motion Scenario Prediction

* Comparison of simulations and NGMM prediction for the same
scenario

Simulation, Scenario: 10 Non-ergodic Prediction, Scenario: 10
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Non-ergodic Model

Approach RMSE (LOO) < [¢Z + 2

Empirical Hybrid Dataset  Ergodic 0.62
Dataset | N Empirical 0.38
T .. T Hybrid 0.34 (45% reduction)
él— 0 °, 080 0" o a; : Elf B oo, © s © o
Ll e Cross-
Non-ergodic Correlation
Effect (Empiricalvs
Simulations)
Source 0.0
Path 0.64
v < . L Site 0.2
True Value True Value 1 5



Conclusions

* 3D Numerical simulations were able to capture complex wave
propagation in the Groningen region

* Proposed kernel function was able to learn systematic path
effects from empirical and simulated records

* Proposed approximation scheme significantly improved
computational efficiency

* Hybrid regression approach leads to further reduction in aleatory
variability
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