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Earthquake simulations become ever more

e 10 Hz Landers earthquake simulation reaching 8.6 PFLOPS on

Finalist)

e Sumatra tsunami earthquake: 220 million finite elements (~111

degrees of freedom) and 3.3M time steps (Uphoff et al., SC17, Best Paper)

e Rapid response: 5 Hz simulations of the 2023 Turkey earthqua
full (~8200nodes) Frontera, and 685 million element mesh, with
order 5 basis functions, 10e12 DoF
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... and produce ever bigger synthetic data

.- 3D simulation output even of small simulations and 2D
output of large simulations is >10s of TeraByte

- Reduction is possible but limited: using modern data

formats (hdf5), single precision (50%), file-system E
aware sequential output (10-20%), or only storying 2D ¢
output (at Earth's surface / on faults, ~ hundred GB) %

- FAIR data sharing standards achieved by archiving
simulation input & parameters (~ hundred GB, no
output)
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Schliwa & Gabriel, SRL, 2023: Ridgecrest mainshock’s synthetic vertical ground
accelerations at three selected stations. (d) Map view of the equivalent near-field corner
frequency (fc) distribution of the vertical components of synthetic seismograms

recorded at ~1,800,000 virtual seismic stations. The synthetic seismograms are
generated from a complex dynamic rupture model of the 2019 Ridgecrest mainshock.
Black lines indicate the fault traces, the star marks the epicenter, colored dots show fc
values of recorded ground motion spectra, and triangles show the virtual station
locations of the analyzed accelerograms. Orange and red lines mark different high-fc

features. Bottom: Peak dip-slip isochrones of stations R1 and R3.

Visualization of 15 TB of 3D volumetric data on
unstructured tetrahedral meshes on Frontera.
Abrams et al., SC’23, Visualization showcase



Reduced-order modeling for on-demand and physics-
informed earthquake model surrogates

* None of the existing physics-based simulation
methods are efficient enough for real-time (early
warning) or routine full physics-based
probabilistic seismic hazard assessment
(evaluating 10,000s of complex models)

Machine Learning
A Probabilistic Perspective

m Kevin P. Murphy
S Data driven models Hybrid model, combining
S Little or no physics machine learning and physics
) Leisvisansnavanissssaiisiiitiiiiiiniaasai
() () [ 0
e Theresults of data-intensive computations can E
be used to construct surrogates, e.g., reduced- 9
order models using low dimensional information
which enable the evaluation of new earthquake
& seismic cycle scenarios near-instantaneously F=ma
Introductory knowledge :
First order : Nonlinear
Analytic physical models Numerical physical models

>

Kong et al. (2019) Amount of knowledge



Reduced-Order Models (ROMs)

|[dentify and exploit a basis to represent families of PDE

The choice of
basis is key!

solutions

Project high-fidelity simulations (large discretizations)
onto a low-dimensional subspace

. Classic origins: fluid mechanics / turbulence studies
(Lumley, 1967)

. Goal: MUCH faster evaluation, while retaining essential
physics

Annu. Rev. Fluid Mech. 1993. 25 : 539-75
Copyright © 1993 by Annual Reviews Inc. All rights reserved
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Reduced-Order Models (ROMs)

. |dentify and exploit a basis to represent families of PDE

solutions
basis is key!
. Project high-fidelity simulations (large discretizations)
onto a low-dimensional subspace

. Classic origins: fluid mechanics / turbulence studies
(Lumley, 1967)

. Goal: MUCH faster evaluation, while retaining essential
physics
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. Advantage: Not a black-box, verifiable SciML! iPOD inherits error analysis from interpolation theory!

. Parallel, scalable software (C, PETSc) implementation capable to work with > 1 billion DoF snapshots +

accessible Python implementation

- Limitations: extrapolation in parameter space challenging; design of parameter space is problem-

dependent (our current form is suitable for <10 dimensions)
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Instantaneous Physics-Based Ground Motion Maps Using

Reduced-Order Modeling

John M. Rekoske X4 Alice-Agnes Gabriel, Dave A. May
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Rapid ground motion maps using data-driven ROMs

» 1 Hz 3D wave propagation %ﬂput: depth, strike, dip, rala

simulations (SeisSol) with
. . : P ]
topography, viscoelastic attenuation, Q [ ]
3D velocity model (Vs>500 m/s) and

| | FOM ROM Q
varying earthquake point sources Q [ ] (SeisSol)
O ~100 .:3 ~2 mS
. . CPUh
e IPOD ROM for instantaneous ] N ]
predictions of peak-ground velocity L] strong

(PGV) maps @ ]
a0 N
 Comparison of different types of

weak
interpolators used in iPOD 0utput PGV maps

. Training FOM solutions /2  Parameter space

. Testing FOM solutions Q ROM solutions

Rekoske, J. M., Gabriel, A.-A., & May, D. A. (2023). Instantaneous physics-based ground motion maps using reduced-order modeling.
Journal of Geophysical Research: Solid Earth, 128, e2023JB026975. hitps://doi.org/10.1029/2023JB026975 8
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Interpolated proper orthogonal decomposition (iPOD)

(a) Data collection (b) Basis construction: Q = UX V' (d) Prediction
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Full-order model (FOM): PGV maps for varying earthquake
source depths and focal mechanisms
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Accuracy comparison of predicted PGV maps for different

iIPOD interpolators
ROM FOM - ROM

MAE=0.11 cm/s

- Comparing radial basis function interpolation (no hyper

. : : XS Radial basis function
parameters!) with various ML regression methods (k-
nearest neighbor, multi-layer perceptron, random forest)
. RBF is uniformly superior in accuracy independent of —
model complexity @ Random forest

FOM PGV map (3D-500A)
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Solving a maximization problem with our ROM by

evaluating millions of scenarios - Ensemble forecasting

 Example application: A worst-case scenario

« ShakeAlert fixes earthquake depths at 8 km: What is the range of error that
could be introduced by this assumption? What is the worst possible case?

* Evaluate difference in ROM for shallow (2 km) and deep (8 km) for one
million focal mechanisms: in the worst-case scenario, the PGV predictions
based on an 8.0 km hypocentral depth could underestimate the true PGV at

this site by up to 3.6 cm/s if the true hypocentral depth is 2.0 km
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Solving a maximization problem with our ROM by

evaluating millions of scenarios - Ensemble forecasting

 Example application: A worst-case scenario

« ShakeAlert fixes earthquake depths at 8 km: What is the range of error that
could be introduced by this assumption? What is the worst possible case?

* Evaluate difference in ROM for shallow (2 km) and deep (8 km) for one
million focal mechanisms: in the worst-case scenario, the PGV predictions
based on an 8.0 km hypocentral depth could underestimate the true PGV at

this site by up to 3.6 cm/s if the true hypocentral depth is 2.0 km
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Rapidly predicted shaking contours may not always
match real shaking due to source or site effects.

ShakeAlert MMI contours ShakeMap MI contours
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Example: M4.6 Malibu, CA Earthquake, February 2024 USGS EEW proposal recommended for funding
ShakeAlert final estimated magnitude: 4.7




Reduced-order modelling for complex three-

dimensional seismic wave propagation 3
John M Rekoske X, Dave A May, Alice-Agnes Gabriel

Geophysical Journal International, Volume 241, Issue 1, April 2025, Pages 526-548,

https://doi.org/10.1093/gji/ggaf049
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Reduced-order modeling for complex 3D seismic wave propagation

Rekoske et al., GJI 2025
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Reduced-order modeling for complex 3D seismic wave propagation

Rekoske et al., GJI 2025
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Earthquake and station locations for Green’s function calculations

- ROM constructed for this region enables rapid computation (0.0001 CPU hr) of complete, high-resolution
(500 m spacing), 0.5 Hz surface velocity wavefields that are accurate for a shortest wavelength of 1.0 km for a
single elementary moment tensor source (& account for geotechnical layer!)

34.4

34.3 1

34.2 1

34.1 1

33.9 1

33.8 1

33.7 1
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& Figure 1. Map of the study area in Southern California used for computing rapid seismic wavefields.
The source and receiver areas are indicated by blue and green rectangles, respectively. In panel (a),

the earthquake source locations used for the simulations are indicated by the coloured circles, where

the colour indicates hypocentral depths ranging from 4 to 20 km. We determine the latitude,

4 12 20
Hypocentral depth (km)

longitude and depths of the earthquakes using a pseudorandom Halton sequence. In panel (b), the

black dots indicate locations of real earthquakes from the Hauksson et al. (2012) catalogue, and the

' ' ' ' ' —— - s magenta lines indicate fault traces from the Southern California Earthquake Center Community Fault
—118.4 —118.2 —118.0 —117.8 —117.6 —118.4 —118.2 Model (Plesch et al. 2024). The red star marks the epicentre of the 1987 M 5.9 Whittier Narrows
Lo ng itude (o) earthquake, which we use as a demonstrator for our finite fault rupture modelling approach.



Earthquake and station locations for Green’s function calculations

- ROM constructed for this region enables rapid computation (0.0001 CPU hr) of complete, high-resolution
(500 m spacing), 0.5 Hz surface velocity wavefields that are accurate for a shortest wavelength of 1.0 km for a
single elementary moment tensor source (& account for geotechnical layer!)
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Our approach can also simulate seismograms for kinematic,
finite fault models
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Reduced-order modeling for complex 3D seismic wave propagation

Rekoske et al., GJI 2025
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Increasing resolution in Cybershake

physics-based PSHA via ROMs submitted to BSSA

CyberShake physics-based seismic hazard maps using reduced-order models: results from Southern San

. . Andreas earthquake scenarios
- CyberShake hazard maps interpolate ground motion

from sparse g rids (~335 sites) John M. Rekoske!*, Scott Callaghanz, Kevin Milner>, Dave A. Mayl , and Alice-Agnes Gabriell#
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Increasing resolution in Cybershake

physics-based PSHA via ROMs

CyberShake physics-based seismic hazard maps using reduced-order models: results from Southern San

Andreas earthquake scenarios

John M. Rekoskel*, Scott Callaghanz, Kevin Milner>, Dave A. Mayl , and Alice-Agnes Gabriel!*

e Using the BAI8 GMM as a baseline: significant non-
ergodic effects (e.g., radiation patterns); GMMs
generally underpredict simulated spectra in deep

(b)
. . . 4
basins like Fillmore
10" 3 -
e |Nterpolation misses localized amplification near 27
basin edges, causing errors up to a factor of ~3 _ — 1- ,
)
~ o /\ ' »
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e Errors increase with frequency (0.1-1.0 Hz) as W f k
. . . v | |
wavelengths shorten relative to station spacing 10" { (I TEAS o vl emiarbs 2 Simulated s(h
1 —— Mean from all ruptures -3 4 — Interpolated s(f)
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e Our ROM model enables high-resolution mapping 10 10 10 10
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with a 336X speedup compared to scaling the
standard reciprocity approach

Figure 10: EAS for one location in the Fillmore Basin indicated by the star in Figure 2b. The simulated minus

interpolated s( f) is just over one natural log unit for some frequencies.
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Next: “Space-time completeness of seismic ground
motions via non-intrusive model order reduction”

NSF Collaborations in Artificial Intelligence and Geoscience (CAIG)

1. Physics-based simulation output of 2. Curated seismic observations
; seismic wave propagation ; e ada
e D May, A Gabriel, D Trugman, B Kramer Suracswaveod - %%g@i%gglcal
What we will do A w = [
e mmmmremeec S
e Build time-dependent parametric surrogate models of seismic ground - vy oy s =W =
motions fusing simulated ground motion wavefields with Sels\(SoI - ..
- . . O . simulation observation
curated observational data from regional earthquakes In I—l—l
Southern California and Nevada 3. Data Fusion
Fuse simulation all]pd observatti)on data Gappy POD [68—71]
: ' . . atri into a istent i
e Examine the fundamental differences in source and path affecting desciibing space, time, parameter variations et singular vectors B,

seismic ground motions from earthquakes in different geologic
settings and with distinct mechanisms, depths, and source properties

4. Operator Inference [65 — 67]

. Deplpy models for seismic hazard asslessment anpl provide ; Eelimoiectionlogele tnichue D=® v udmensions snapshot fom
phyS|CS‘baSGd earthquake ear'Y'Wamlng and rapld reSpOnse Il. Define the structure of the reduced-order model 7()\ — :4@ -+ H (f/v\ X f/v\) -+ éf

Methods T

Non-intrusive learning through inferring

+ Gappy POD (data fusion) g et enip i V = ®(t1),0(t2), - .., 0(tx))
e ROM —> Operator Inference (OplInf) . o TH? LR
A H.B
e Open-source HPC toolkit for large scale POD (SVD) and Oplnf X | . | 7 .T.
ow-dimensional operators define the Minimum residual formulation leads to Regularization

reduced model as a dynamical system a regularized least squares problem

terms



Summary

« Non-intrusive interpolated POD
reduced-order models are:

e Easy to use;

e As accurate as required, without
needing vast volumes of training
data;

o Easy to interpret;

e Remarkably accurate

e Verifiable (no black box, we have
error estimators);

e Remarkably fast to evaluate

o Applicable to shake maps, seismic
wave propagation, dynamic rupture,
SSE cycles, ...

 We still need high-quality HPC
simulations, but we can “do more"
with fewer FOMs by exploiting ROMs

Speedup summary
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