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Who Uses Cascadia Ground Motions and GMMs for
Infrastructure

> Structural engineering practitioners:
— New design
— Evaluation and retrofit
— Equivalent static analysis or modal analysis using spectral acceleration
— Dynamic analysis using selected and scaled ground motions
> Researchers
— Develop improved understanding of infrastructure component and system performance

— Innovate in building code requirements, special systems, fragility and resilience models, prioritization
schemes for retrofit

> Agencies
— Regional loss estimation for planning
— Prioritization of limited resources for retrofit




How Structural Engineering Practitioners use Ground Motions

> Conventional Structural Design, New Structures (~85%+):

— USGS seismic hazard model (map) is used provide a maximum direction
acceleration response spectra.

— For buildings (ASCE 7)
> Spectra is now defined at 20 structural periods, Minimum Design Loads and

> Each point represents the risk-adjusted MCE (2475-year return period) Qf‘.?.‘;?,‘,a;f‘;',,f,"é‘iﬂif‘s’;uctu,es

spectral acceleration
> Risk-adjustment achieves a uniform collapse risk for an assumed collapse
fragility curve.
— Slightly different for bridges in terms of return period, number of periods
defining the spectrum and risk adjustment.

— Spectra is then interrogated at a single point (the structure’s natural period
of vibration) that is used to estimate MCEg and then design level seismic
forces (2/3 MCER)

— Spectral shape and ground motion duration are not considered

— ASCE 7 and associated IBC reference documents are based largely on
the CA earthquake experience

— Both OR and WA are in the process of adopting ASCE 7-22




How Structural Engineering Designers use Ground Motions

> Performance-Based or Code-Alternative Design, New Structures:

Tall buildings, long-span bridges, critical facilities, SDC E (ASCE 7-22 and qh
o g . AN ALTERNATIVE PROCEDURE FOR
LA Tall Buildings Guide) SEISMIC ANALYSIS AND DESIGN OF
. . . . N TALL BUILDINGS
Site specific response spectra are developed using site characteristics and T s——

available GMMs. Two approaches: e
> Risk-adjusted uniform hazard (similar to USGS)
> Scenario-based (conditional mean spectra, sometimes developed at multiple
structural periods and enveloped)
Spectra used for preliminary design using elastic structural analysis

For design validation and performance evaluation, nonlinear response
history analysis is used, and ground motions are selected from available
databases and scaled to the site-specific spectra

ASCE 7-22 has rules on record selection and scaling (minimum 11 pairs of
records, must exceed 90% of target spectrum over period range of 0.2T to

1.57)

GM selection must consider the source characteristics weighted by their
contribution to the hazard (found through deaggregation)

NRHA then accounts for spectral shape and duration




Spectral Shape and Ground Motion Duration

> Many recent studies (e.g., Eads et al. 2015, > Alternative IM’s that account for one or both
Chandramohan et al. 2016, Marafi et al. 2016) (e.9., S, . have been developed
have shown that ground motion duration and
spectral shape influence structural
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Spectral Shape and Ground Motion Duration

> These alternative IM’s reduce uncertainty in estimating structural response (i.e., they correlate
better with structural response than S, alone) so having GMMs that produce the components
necessary to produce them is useful, especially for improving regional analysis

> Note that many fragility curves in the literature or in HAZUS were derived using crustal ground
motions (different spectral shape and duration) and may be unconservative to apply in

Cascadia
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Structural Engineering Research Applications for Ground

Motion Models

>  Multiple Stripe Analysis:

— Suites of ground motions are
selected and scaled using
conditional mean spectra derived
for different return periods

— These are hazard consistent at
each return period and rely on
hazard specific GMM’s and
available records

> To generate fragility curves for
structures we need stripes to very
large return periods so that
collapse cases occur

> Integrated with the hazard curve
we can then compute 50-year
collapse risk (or other
performance states)

Crustal (47 Motions) Intraslab (6 Motions) Interface (47 Motions)

Hazard




Structural Engineering Research Applications for Ground

Motion Models
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50- Year Collapse Risk
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Design Strategies
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Improving Regional Scale Simulations




Regional Loss/Resilience Estimation

Each step in the process is Bridec e
improved by quantifying and Site ClassAriE}iﬁcation
reducing uncertainties Ground Motion B —
UW has developed detailed 2 -
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GM Intensity from Physics-based Simulations
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Regional Collapse Predictions in an M9

Compute Collapse Probability (for each location)

Plcol.| M9 ] = j j Pl col.| Sars/11" foasss (Sanrs | MO) - fo (/1) d1/7 dSaers

- —

Collapse Fragility Variation in S, . in M9 CSZ Variation in Strength
w Code Minimum Performance Group T,=1.0 T,=1.0
9 1.00 < 1.0 -
© 1.0 ~ '
ol 2 2
Y W re) =
S 0.50 1 - S 0.5 - B 0.5 1
= Q <Q
5 0.25 - O MCEg o o
3 0Q ® M9 Seattle a- -
S 0.00 —— T . 0.0 - 0.0 -
o 2 3 5 10 20 0.25 0.5 1.0 2.0 0.05 0.1 0.2 0.5 1.0
Sa,efiln Sa, eff n

. W



Regional Variation in Collapse Probability
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Reducing Uncertainty Results

Using S, Using S, o«

Prob. Of Collapse (T, = 1s, Low-Strength Ductile Prob. Of Collapse (T, = 1s, Low-Strength Ductile)
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