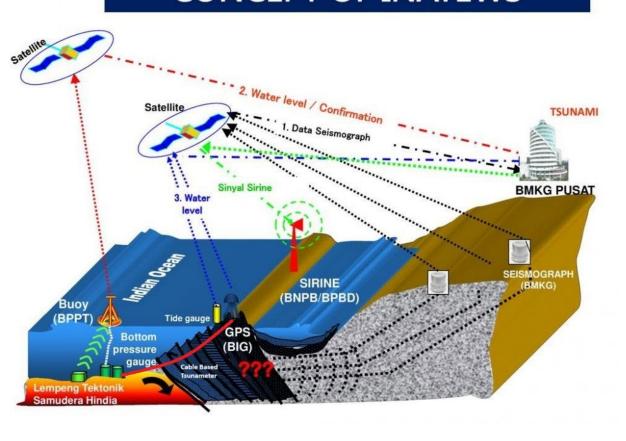



# STRENGTHENING TSUNAMI EARLY WARNING IN INDONESIA THROUGH OFFSHORE OBSERVATIONS AND EEWS INTEGRATION





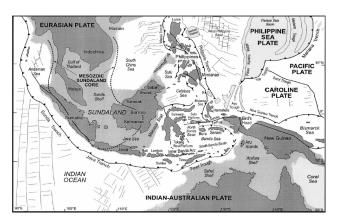


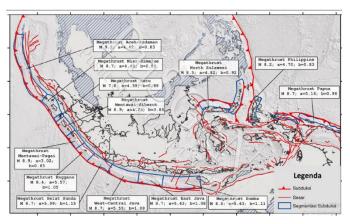



CRESCENT ANNUAL MEETING, 10/27/2025



#### INDONESIA'S EARTHQUAKE AND TSUNAMI THREAT

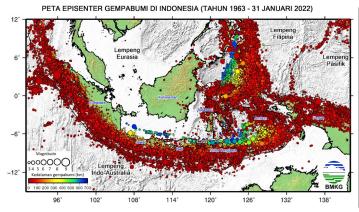

### **CONCEPT OF INATEWS**




- 1. Coastal Sea-Level Stations (Shallow Water)
- 2. Bottom Pressure
  Sensors (DARTs)
  (Deep Water)
- 3. Cabled sensors
  (Intermediate
  Depths –Deep Water)



#### INDONESIA'S EARTHQUAKE AND TSUNAMI THREAT






Consequence of Indonesia is being located on 4 tectonic plates: 13 megathrust and 295 active faults

Indonesia is located on the border of 4 tectonic plates

- 1. Indo-Australia
- 2. Eurasia
- 3. Pacific
- 4. Philippines.



Seismicity of Indonesia

The impact not only to Indonesia but also to ASEAN and many countries in Indian Ocean coastal area



46% of Indonesia's coastline are prone to tsunami



# INAUGURATION OF INDONESIA TSUNAMI EARLY WARNING SYSTEM



#### **Inaugurated on November 11, 2008**

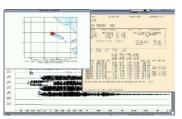


InaTEWS' main products: earthquake information and tsunami early warning

Dissemination within 3 minutes after earthquake (2023 – now)

Indonesia's target of Tsunami Early Warning System:

Quickly detecting earthquake and inform tsunami early warning to stakeholders




Exact response from the community to reduce and minimize disaster impact



#### MILESTONE OF MONITORING AND PROCESSING INATEWS







< 21 Sensor

21 Sensor

176 Sensor

370 - 493 Sensor 493 - 600

Sensor











< 1990 Processing Manual data analog

1- 2 hari

1991 - 2007 Processing manual data digital (ONYX, JISNET, Jopen)

3 jam

2008 - 2018 InaTEWS : automatic SeisComP, DSS,

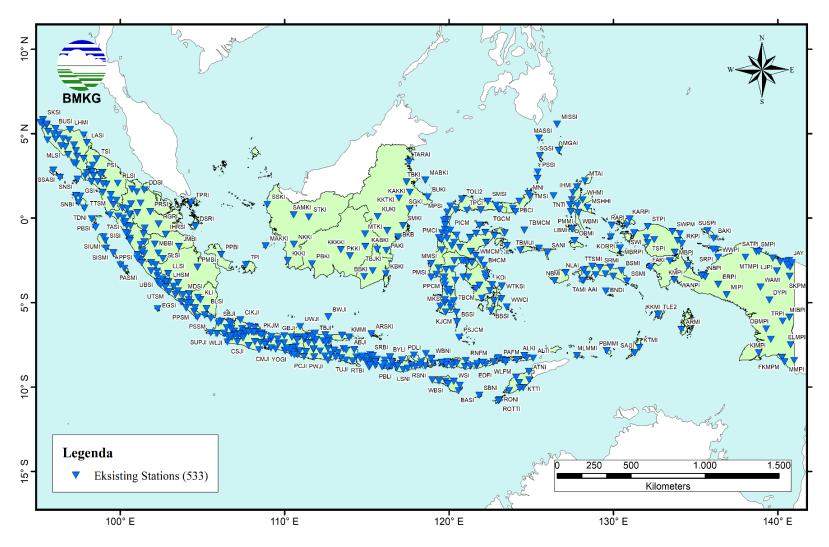
TOAST 5 menit 2019 – 2023 Pengembangan InaTEWS

3 - 5 menit

2023 - dst
Pengembangan InaTEWS:
SisPro Merah Putih,
Otomatisasi prosesing dan
diseminasi

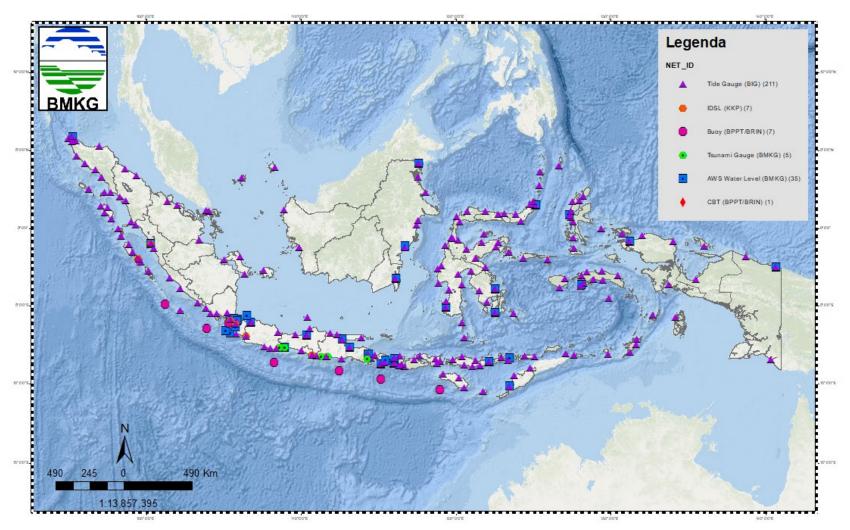
1 - 3 menit

Processing manual data konvesional


Proceesing data digital

manual

Processing otomatis dan data digital




# INDONESIA SEISMIC SENSORS NETWORK





### **SEA LEVEL MONITORING NETWORK OF INATEWS**



Sea level sensors network: 266 sensors



### SEA LEVEL MONITORING NETWORK OF INATEWS

**PGT - BMKG** 



**PUSMAR - BMKG** 

KKP







**TSUNAMI GAUGE** 



**AWS - WATER LEVEL** 



**IDSL - WATER LEVEL** 



**TSUNAMI BUOY** 



Cable Based Tsunameter (CBT)

#### BIG



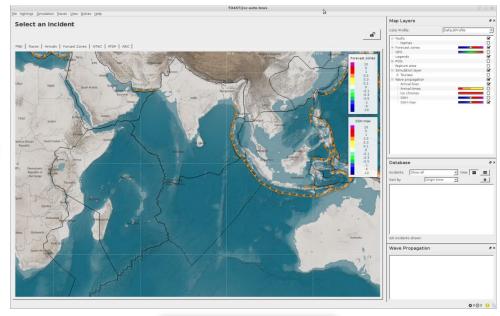
**TIDE GAUGE** 

| NO | NETWORK           | TOTAL | OWNER | SAMPLING RATE                                              | TRANSMIT RATE                                          |
|----|-------------------|-------|-------|------------------------------------------------------------|--------------------------------------------------------|
| 1  | AWS Water Level   | 35    | BMKG  | 1 minute                                                   | 1 minute                                               |
| 2  | Tsunami Gauge     | 5     | BMKG  | 1 minute                                                   | 5 minutes                                              |
| 3  | Tide Gauge 1      | 157   | BIG   | 1 minute                                                   | 5 minutes                                              |
| 4  | Tide Gauge 2 (RT) | 54    | BIG   | 5 seconds                                                  | 5 seconds                                              |
| 5  | IDSL              | 7     | KKP   | 11 seconds                                                 | 11 seconds                                             |
| 6  | Buoy              | 7     | ВРРТ  | 15 minutes (normal<br>mode) / 15 seconds<br>(tsunami mode) | 1 hour (normal model)<br>/ 1 minutes (tsunami<br>mode) |
| 7  | СВТ               | 1     | ВРРТ  | 15 seconds                                                 | 15 seconds                                             |

Number of Integrated Sea Level Monitoring Sensors: 266 Sensors



# **PROCESSING SYSTEM**




#### Seiscomp - earthquake analysis

**TOAST** (Tsunami Observation And Simulation Terminal )
Using real time and pre-calculated tsunami database simulation



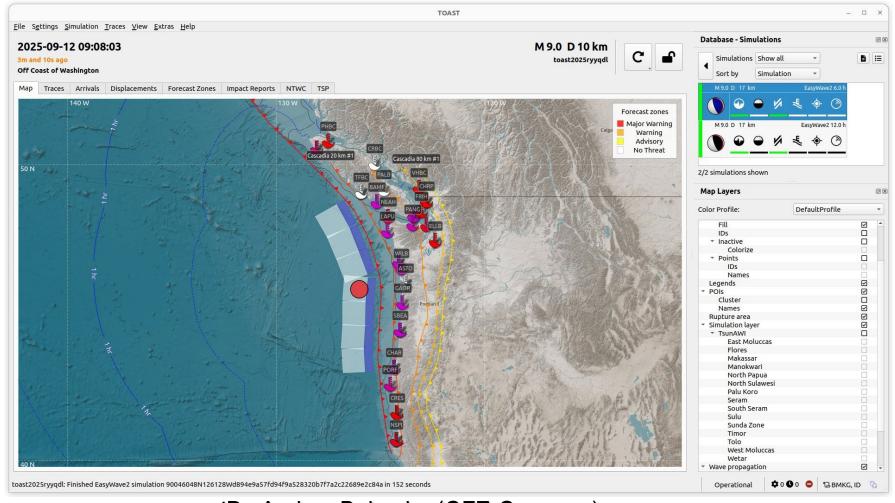




# Earthquake Information

#### Tsunami Warning

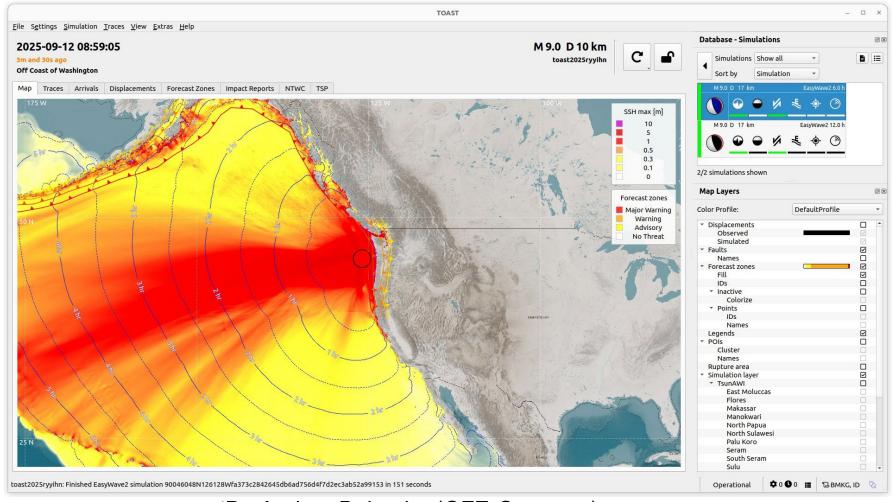
- Origin Time
- Magnitude
- Depth
- Location







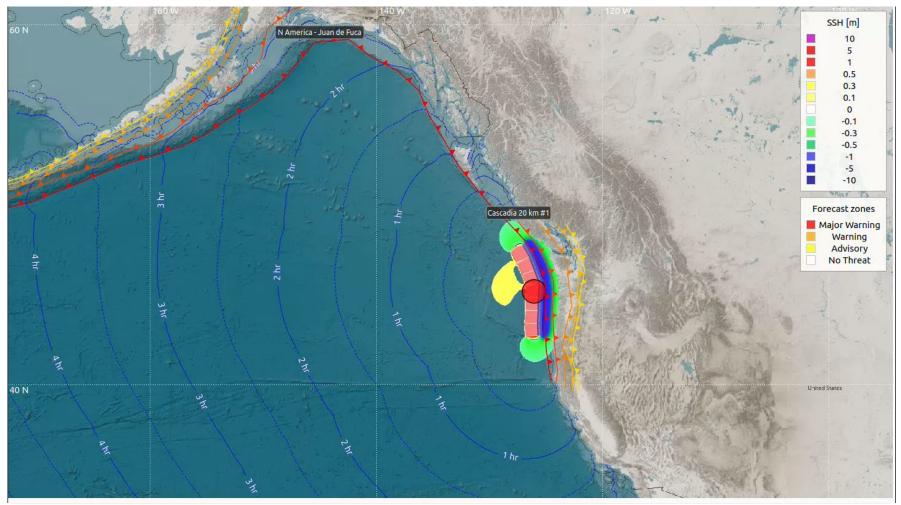




# TSUNAMI PROCESSING SYSTEM TOAST (TSUNAMI OBSERVATION AND SIMULATION TERMINAL)



- 1. easyWave (Dr. Andrey Babeyko (GFZ-Germany)
- 2. TsunAWI (Alfred Wagener Institute-Germany)




# TSUNAMI PROCESSING SYSTEM TOAST (TSUNAMI OBSERVATION AND SIMULATION TERMINAL)



- 1. easyWave (Dr. Andrey Babeyko (GFZ-Germany)
- 2. TsunAWI (Alfred Wagener Institute-Germany)



# TSUNAMI PROCESSING SYSTEM TOAST (TSUNAMI OBSERVATION AND SIMULATION TERMINAL)



- 1. easyWave (Dr. Andrey Babeyko (GFZ-Germany)
- 2. TsunAWI (Alfred Wagener Institute-Germany)



#### **EQ TSUNAMI KAMCHATKA M8.7**

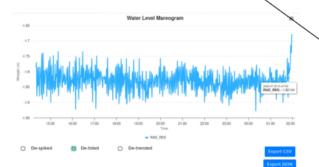
: M8,7

Date : Wednesday, 30 July 2025 Magnitudo

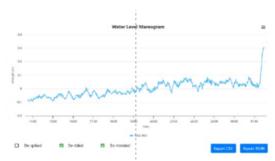
Time : 06:24:50 WIB Epicenter : 52,51° N; 160,26° E

Location: East Coast Kamchatka, Rusia Depth: : 18 Km

#### Last Sea Level Anomaly Alerts (Auto Update)


| ID            | CHANNEL      | TS_AIC              | TS                  | WH     | LAST_DATA           | LEVEL | METHOD | SNR    | EVENT_ASSOC | SRC |      |
|---------------|--------------|---------------------|---------------------|--------|---------------------|-------|--------|--------|-------------|-----|------|
| 1753841881540 | TS.SMBJI.RAD | 2025-07-30 02:12:30 | 2025-07-30 02:17:17 | -0.228 | 2025-07-30 02:17:45 | 7.514 | zd     | -0.532 | None        | INT | View |
| 1753841743040 | TS.TLBJI.RAD | 2025-07-30 02:07:44 | 2025-07-30 02:13:58 | 0.152  | 2025-07-30 02:15:29 | 7.511 | zd     | 1.663  | None        | INT | Viev |
| 1753841541525 | TO.ADAK.WLS  | 2025-07-30 01:55:00 | 2025-07-30 02:00:00 | 0.137  | 2025-07-30 02:06:00 | 8.021 | sl     | 2.968  | None        | INT | Viev |
| 1753840783561 | TS.SMBJI.RAD | 2025-07-30 01:55:06 | 2025-07-30 01:59:30 | -0.327 | 2025-07-30 01:59:38 | 7.585 | zd     | -0.657 | None        | INT | Viev |
| 1753840708610 | TO.HANA.RAD  | 2025-07-30 01:21:00 | 2025-07-30 01:17:00 | 0.307  | 2025-07-30 01:49:00 | 8.694 | sl     | 1.426  | None        | INT | Viev |
| 753840660871  | TS.SMBJI.RAD | 2025-07-30 01:48:22 | 2025-07-30 01:56:30 | -0.339 | 2025-07-30 01:57:32 | 7.520 | zd     | -0.704 | None        | INT | Viev |
| 1753840352277 | TS.SMBJI.RAD | 2025-07-30 01:44:33 | 2025-07-30 01:49:56 | -0.256 | 2025-07-30 01:52:18 | 7.613 | zd     | -0.671 | None        | INT | Viev |
| 753839995571  | TS.SMBJI.RAD | 2025-07-30 01:39:52 | 2025-07-30 01:44:13 | -0.263 | 2025-07-30 01:46:21 | 7.538 | zd     | -0.736 | None        | INT | Viev |
| 1753839508857 | TS.SMBJI.RAD | 2025-07-30 01:31:49 | 2025-07-30 01:36:56 | -0.261 | 2025-07-30 01:38:20 | 7.516 | zd     | -0.819 | None        | INT | Viev |
| 1753839388735 | TS.TLBJI.RAD | 2025-07-30 01:32:38 | 2025-07-30 01:35:09 | 0.125  | 2025-07-30 01:36:15 | 7.535 | zd     | 0.980  | None        | INT | Viev |
| 1753839185732 | TS.TLBJI.RAD | 2025-07-30 01:24:24 | 2025-07-30 01:32:11 | 0.129  | 2025-07-30 01:32:55 | 7.510 | zd     | 0.941  | None        | INT | Viev |
| 753838270385  | TS.TLBJI.RAD | 2025-07-30 01:14:02 | 2025-07-30 01:15:41 | 0.135  | 2025-07-30 01:17:41 | 7.518 | zd     | 0.949  | None        | INT | Viev |
| 753838132301  | TO.NKSK.RAD  | 2025-07-30 00:50:00 | 2025-07-30 00:55:00 | 0.076  | 2025-07-30 01:06:00 | 8.938 | sl     | 3.108  | None        | INT | Viev |




### **IOC TIDE GAUGE RECORDS**




TG Kushiro, Jepang measured 0,1 m at 08:30 WIB



TG Ofunato, Jepang measured 0,4 m at 08:47 WIB



TG Hanasaki, Jepang (TO.HANA) measured 0,3 m at 08:16 WIB



TO.NKSK.RAD

Nikid class, Rantiss

+ ORSICONO + PREDICT + NESIGN

8.5

8.5

9.15

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

4.25

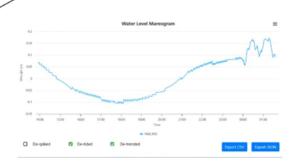
4.25

4.25

4.25

4.25

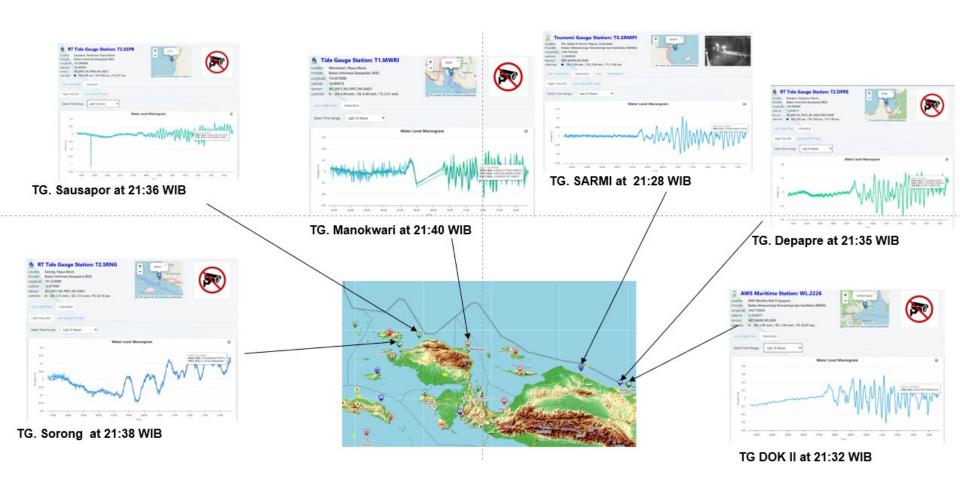
4.25


4.25

4.25

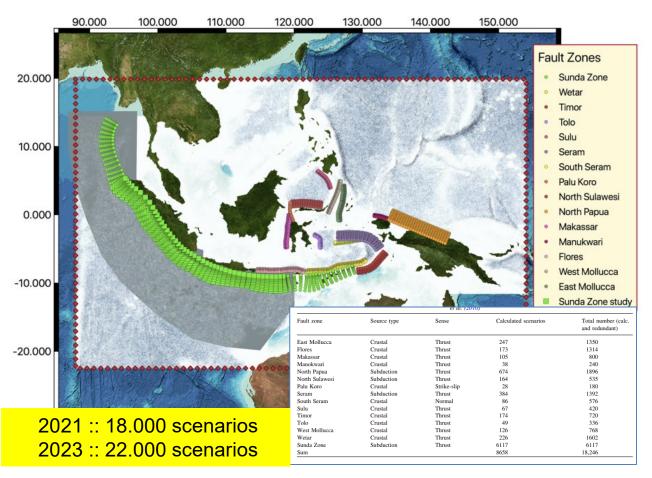
4.25

4.25


TG Nikol skoe, Rusia (NKSK) measured 0,3 m at 07:17 WIB



TG IOC Petropavlovsk, Rusia measured 0,1 m at 07:00 WIB




### AWS Maritim, Tide Gauge & Tsunami Gauge Records





# TSUNAMI MODELING DATABASE TOAST (TSUNAMI OBSERVATION AND SIMULATION TERMINAL)



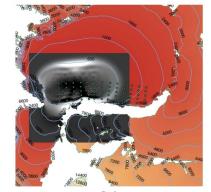



Figure 3

Example of some of the data products derived from the model output. The figure contains arrival times as gridded background field as well a isochrones and a snapshot of sea surface height after 10 min in monochrome

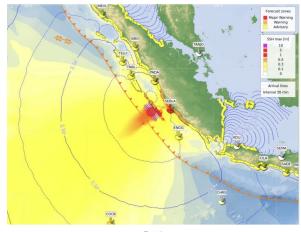
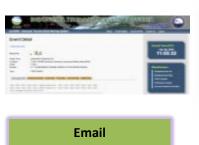



Figure 4


TOAST snapshot displaying source area, SSHMax and isochrones of a dabase scenario close to the M<sub>w</sub> 7.8 Mentawai earthquake on October

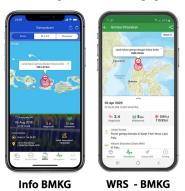
25, 2010

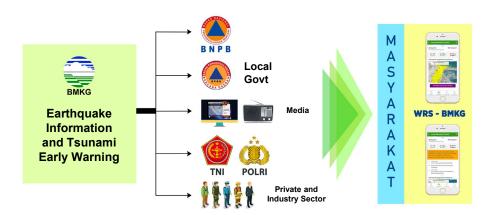


# **DISSEMINATION MODES**





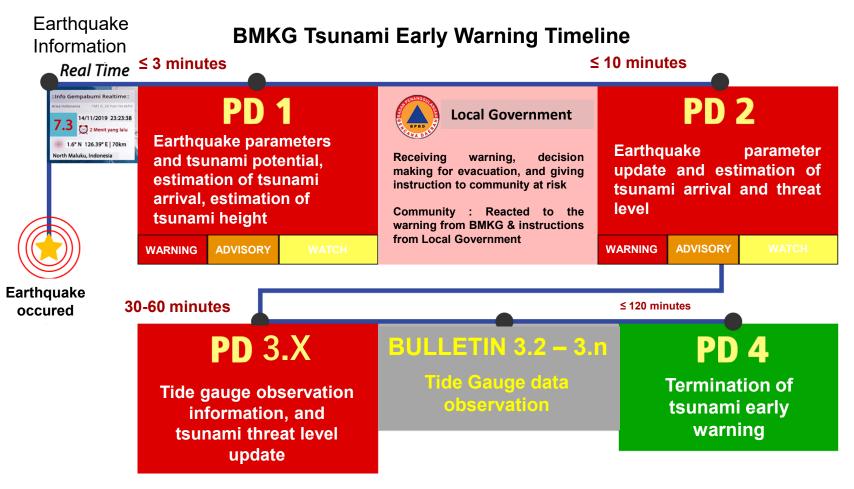











**Dissemination Flow** 



#### **TSUNAMI EARLY WARNING TIMELINE**



# TSUNAMI THREAT LEVEL STATUS

| Status                | Description                                                                                                                                                                                                                                                |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WARNING<br>> 3 M      | The Regional Government in "Warning" status is expected to pay attention and immediately direct the public to conduct a <b>complete evacuation</b> . This status indicates a high level of danger, with the potential for waves exceeding 3 meters.        |
| ADVISORY<br>0,5 -3 M  | The Regional Government in "ADVISORY" status is expected to pay attention and immediately direct the public to evacuate. This status indicates a significant level of danger, with the potential for waves between 0.5 and 3 meters.                       |
| WATCH<br>0,25 - 0,5 M | The Regional Government in "WATCH" status is expected to pay attention and immediately direct the public to stay away from beaches and riverbanks. This status indicates a heightened level of caution, with the potential for waves less than 0.5 meters. |



# EXAMPLE OF INFORMATION ON MOBILE APP WARNING RECEIVER SYSTEM

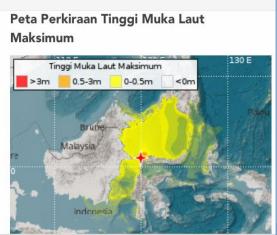




28 Sep 2018 P.D. Tsunami 1
17:02:44 WIB (2 bulan yang lalu)

**å** 7.7 Magnitudo

0.18 Ls119.85 BT


Peringatan Dini Tsunami untuk wilayah: SULBAR, SULTENG, Gempa Mag:7.7, 28-Sep-18 17:02:44 WIB, Lok:0.18 LS, 119.85 BT (27 km TimurLaut DONGGALA-SULTENG), KedImn:10 Km::BMKG







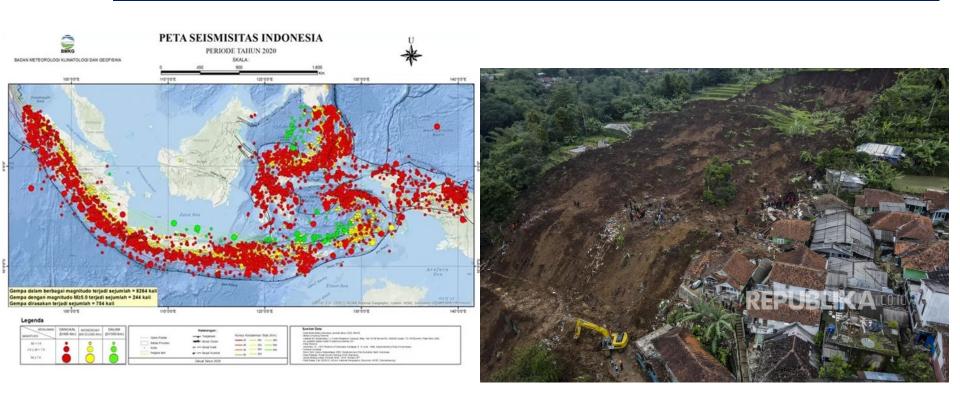




| Daerah | vang  | berpote | nsi tsuna   | mi |
|--------|-------|---------|-------------|----|
| Dacian | yanıq | Deibore | iisi tsuiid |    |

| Provinsi  | Kota/Kabupaten                   | Status<br>Peringatar |
|-----------|----------------------------------|----------------------|
| Sulteng   | Toli-Toli                        | SIAGA                |
| Sulteng   | Buol                             | WASPADA              |
| Gorontalo | Gorontalo Bagian<br>Utara        | WASPADA              |
| Sulut     | Bolaangmongondow<br>Bagian Utara | WASPADA              |
|           | -∕∿•                             | i                    |
| Beranda   | Gempabumi                        | Tentang              |

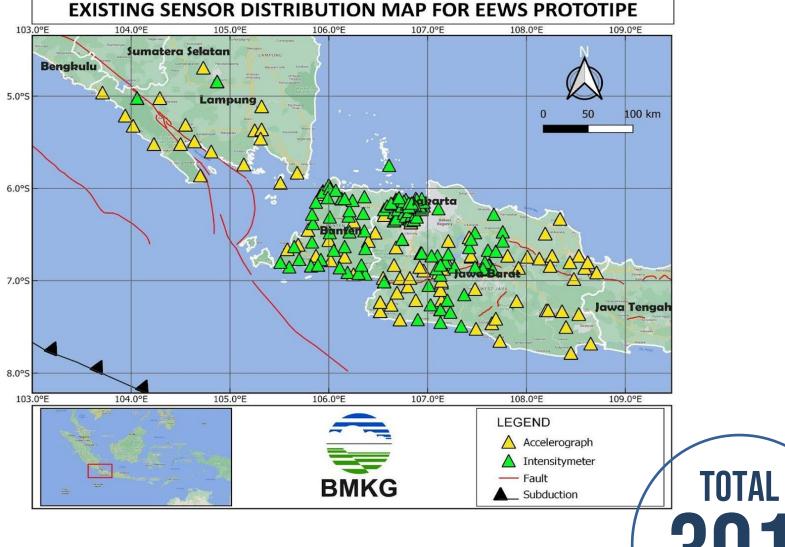
Tsunami early warning can be received through phone with informative map display and text information, quick and massive.


Application available on Google Play and App Store








### **INDONESIA EARTHQUAKE EARLY WARNING SYSTEM**





We need to detect seismic events in real time and provide early warning, allowing for timely evacuation and safety measures.








**SENSOR** 



### PERFORMANCE EEW ON CIANJUR M5.6 EQ 21 NOVEMBER 2022





- Warning 6 seconds after OT with significant error
- The error decreased gradually and stable after 7.5 seconds (epicenter and depth), and 12 seconds (magnitude)
- Final error: 15km (epicenter), 2km (depth), 0.8 (magnitude)



#### **InaEEWS MONITORING WEBSITE**



#### LATENCY

Berfungsi untuk quality control sensor data latency yang bertujuan memonitoring nilai latency sensor yang digunakan

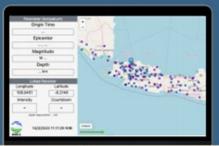


#### **VERIFIKASI**

Berfungsi untuk quality control terhadap true dan false event gempabumi yang dihasilkan EEWS dan Pusat Gempa Nasional

### EEWS MONITORING WEBSITE




#### RS EEWS

Receiver system yang befungsi menampilkan event gempabumi dengan fitur countdown waktu tiba gelombang S. parameter dan nilai MMI gempabumi



#### **REAL MMI**

Menampilkan nilai MMI observasi dari sensor accelerometer dan intensirymeter yang merekam sinyal gempabumi



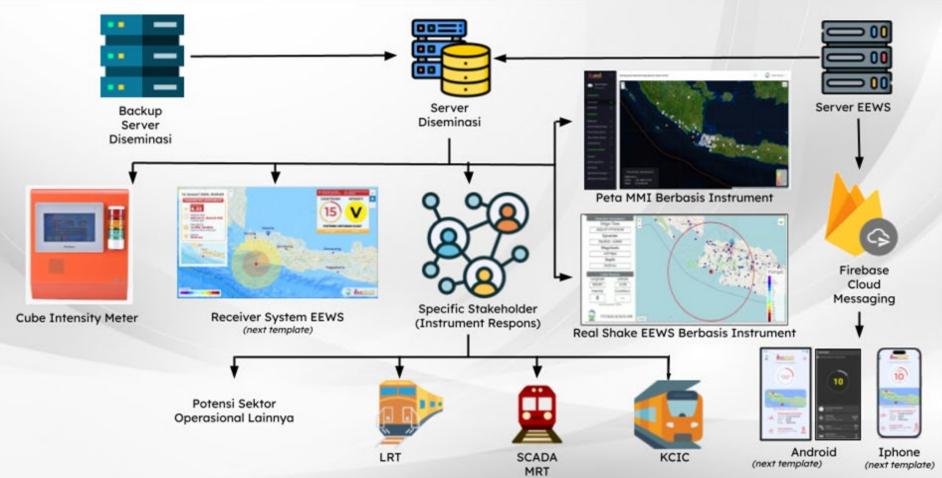
#### **REAL PGA**

Menampilkan nilai pga disetiap sensor yang direpresentasikan dengan warna dan memberikan informasi parameter gempabumi



# DOCUMENTATION OF DISSEMINATION USING INAEEWS MOBILE (ANDROID APPS)

- April 27, 2024 at 23:29:47 WIB (UTC +7) a tectonic earthquake with a magnitude of M6.2 occurred in the Indian Ocean, South of West Java
- The epicenter of the earthquake was located at 8.39° S and 107.11° E, precisely located at sea at a distance of 156 km southwest of Garut Regency, West Java
- THE APPS STILL UNDER INTERNAL TESTING










### **PLANNED DISSEMINATION**







#### **CONCLUSION**

#### **Shared Threat, Shared Solutions**

Indonesia (from the Sunda Arc) and Cascadia face similar, time-critical megathrust tsunami threats. Our presentation even utilized TOAST simulation models for an M 9.0 Cascadia event, demonstrating the global nature of this threat and the need for shared solutions.

#### Offshore Observations are Non-Negotiable

Our experience shows that seismic data alone, while critical for the *initial* warning (now <3 minutes), is not enough. Our network of offshore observations (Buoys, Tide Gauges, CBTs) is crucial for:

- •Confirmation: Providing the "ground truth" that a tsunami has been generated.
- •Modeling Accuracy: Updating wave height and arrival time estimations.
- •Building Trust: Reducing false alarms and enabling timely warning terminations (PD 4)



#### CONCLUSION

#### **Key Lesson: EEWS Integration is a Game-Changer**

As Cascadia plans its offshore network, we offer a critical lesson from our own development: **integration with an Earthquake Early Warning System (EEWS)**.

- •Our InaEEWS can issue alerts in *seconds* (e.g., 6 seconds after the Cianjur EQ).
- •This creates a robust, layered system:
  - **1.Seconds-Warning (EEWS):** A shaking alert for self-evacuation *before* the wave's arrival.
  - **2.Minutes-Warning (TEWS-Seismic):** The initial tsunami potential warning based on seismic parameters.
  - **3.Confirmed Warning (TEWS-Sea Level):** An updated, validated warning confirmed by offshore observation data.



# THANK YOU

**CENTER FOR EARTHQUAKE AND TSUNAMI BMKG**