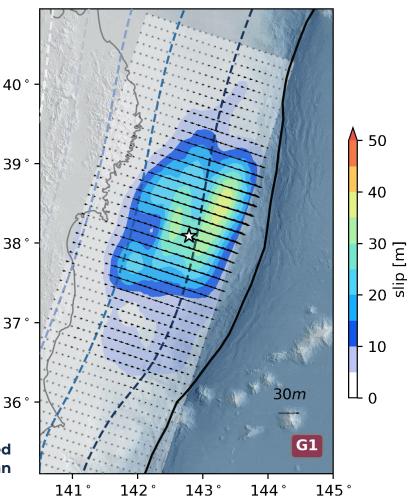

Alice-Agnes Gabriel

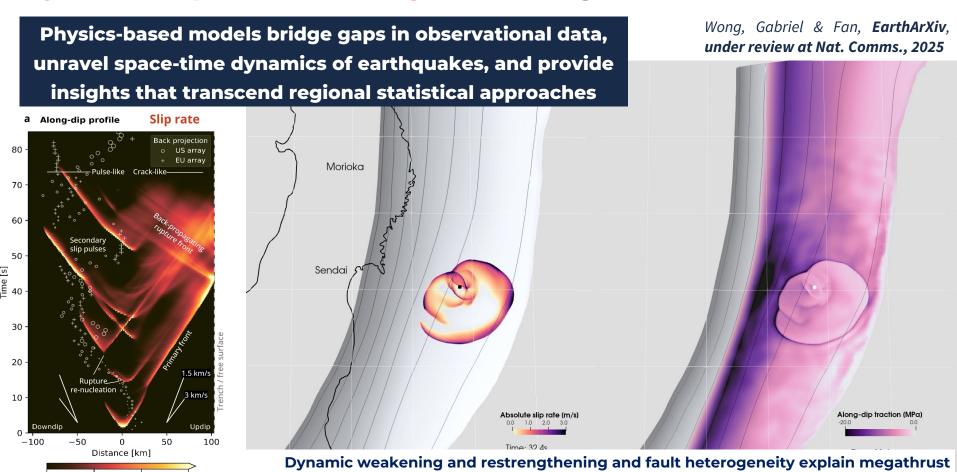
(and many others as referenced throughout the talk)

Rupture Rhapsody: Splay and Partial Rupture Dynamics in Cascadia



Henneking et al., SC'25 & Glehman et al.. Seismica 2025

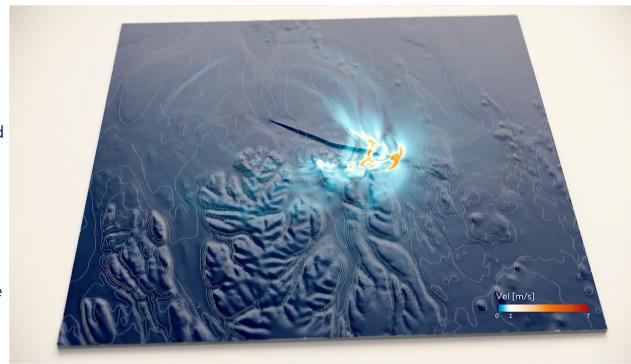
Integrating interdisciplinaryobservations remains difficult


 Without physics-based models, integrating interdisciplinary observations remains difficult, can lead to non-unique results, opposing hypothesis and datasets studied in isolation

32 finite fault models of the same well-recorded earthquake: the 2011 Tohoku-Oki earthquake in Japan

Dynamic rupture modeling at the megathrust scale

slip rate [m/s]

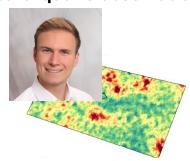


earthquake complexity in 3D dynamic rupture simulations of the 2011 Tohoku-Oki event

Dynamic rupture simulations*

*earthquake dynamics are not predetermined in these models but evolve due to the model's initial conditions and the way the fault yields and slides controlled by an assigned friction law relating shear and normal traction on frictional interfaces and the non-linear coupling with seismic wave propagation

- Earthquakes: frictional shear failure of brittle solids under compression along preexisting weak interfaces
- Dynamic rupture modelling:
 Seismic wave propagation coupled to dynamically running shear fracture on a frictional interface embedded in a rheological continuum (elastic, visco-plastic, poroelastic, ...)
- Efficiently utilizing the largest supercomputers world-wide since decades (and still today!) building upon decade-long developments in computational seismology

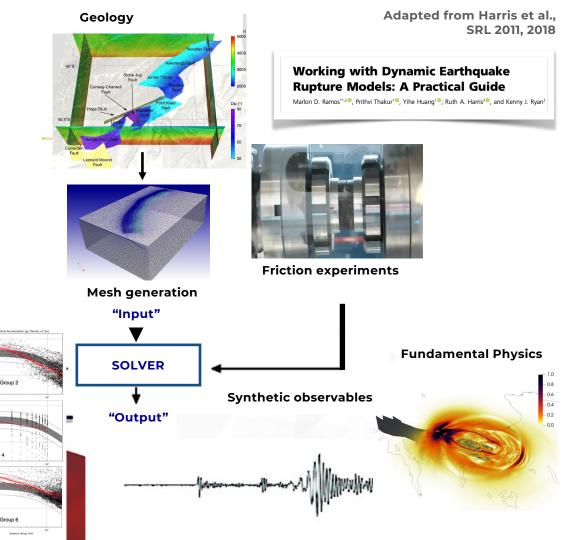


One of a suite of dynamic rupture simulations informing physics-based PSHA in North Iceland, Bo Li et al., JGR 2023

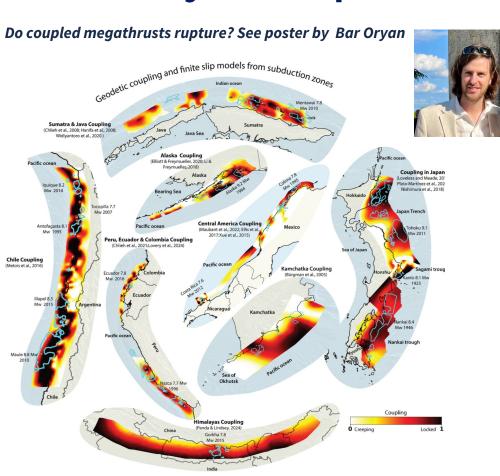
Initial conditions

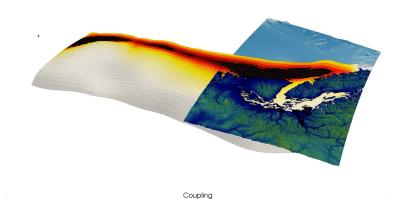
 Data-driven: constrained and validated by the full breath of earthquake observations

See talk by Fabian Kutschera



Initial fault loading


Interdisciplinary links, e.g., tsunami, ground motions, ..


Physics-Based Simulation of Near-Source Ground Motions: A Group Modeling Approach towards Advancing Seismic Hazard Characterization using Dynamic Ruptures

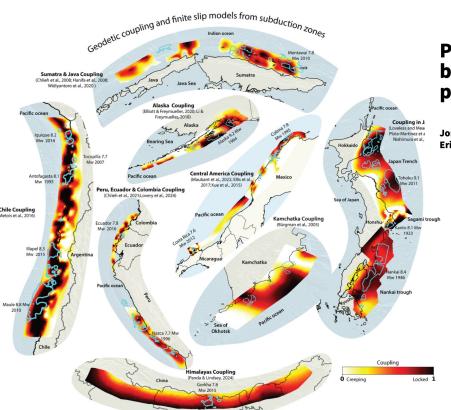
Kyle Withers¹, Yongfei Wang*², Thomas Ulrich³, Dunyu Liu⁴, Ben Duan⁵, Alice-Agnes Gabriel***6,³, Elif Oral^{7,8}, Shuo Ma⁹, Jean-Paul Ampuero¹⁰, Luis Dalguer¹¹, Domniki Asimaki⁷, František Galloviči¹², Lubica Valentova¹², and Christine Goulet****²

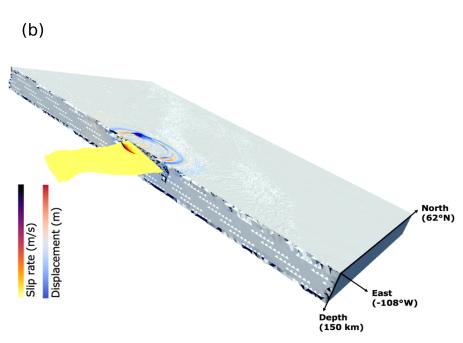
From geodetic slip deficit models to Cascadia dynamic rupture simulations

From geodetic slip deficit models to Cascadia dynamic rupture simulations

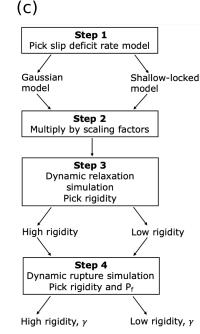
Do coupled megathrusts rupture? See poster by Bar Oryan

doi:10.26443/seismica.v2i4.1427




Partial ruptures governed by the complex interplay between geodetic slip deficit, rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations

Jonatan Glehman $^{\circ}$ * $^{\circ}$, Alice-Agnes Gabriel $^{\circ}$ $^{\circ}$, Thomas Ulrich $^{\circ}$ 9 , Marlon D. Ramos $^{\circ}$ 9 , Yihe Huang $^{\circ}$, Eric O. Lindsey $^{\circ}$ 5.6


- Geodetic models imply ~O(10 m) accumulated slip deficit, but the translation of those rates into dynamic rupture initial stresses is non-unique, e.g., depends on material properties
- We link geodetically inferred slip deficit models to 3-D dynamic rupture simulations varying shallow rigidity structure and pore-fluid pressure (effective normal stresses)

Workflow: from geodesy to self-consistent initial stresses to dynamic rupture

Unstructured tetrahedral mesh for SeisSol (*Gabriel et al., 2025*) simulation, accounting for the megathrust, and topo-bathymetry, 6,5 million elements. Modeling 400 seonds of rupture and waves requires 6000 CPUh (2 hours on 3k cores)

Select a slip-deficit model (SDM), assign along-strike recurrence-time scaling factors

Compute stress changes with an **in-code dynamic relaxation**

simulation using the same

mesh and geometry and accounting for off-fault **rigidity**Sum the SDM-derived stress changes with **depth-dependent normal stress** to obtain the

This **links shear and normal stresses consistently** and allows exploration of sensitivities, e.g., to depth-variable pore-pressure gradients

total initial shear and normal

stress on the megathrust

Workflow: from geodesy to self-consistent initial stresses to dynamic rupture

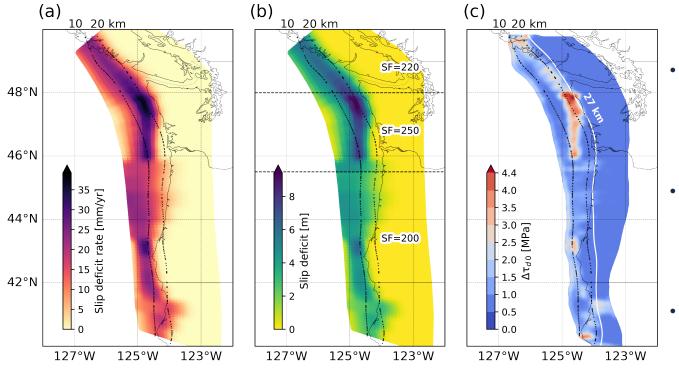
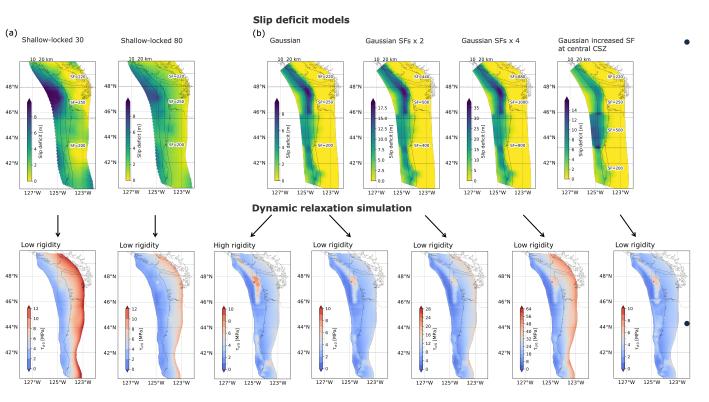
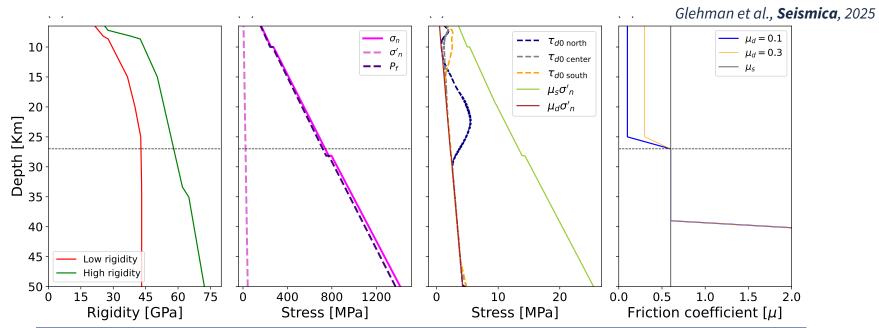



Illustration of the workflow to derive initial stresses from a given slip deficit model

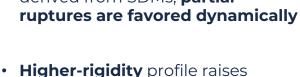
- Select **a slip-deficit model** (SDM), assign along-strike recurrence-time scaling factors
 - Compute stress changes with an **in-code dynamic relaxation simulation** using the same mesh and geometry and accounting for off-fault **rigidity**
 - Sum the SDM-derived stress changes with **depth-dependent normal stress** to obtain the total initial shear and normal stress on the megathrust
 - This **links shear and normal stresses consistently** and allows exploration of sensitivities, e.g., to depth-variable pore-pressure gradients


Model inputs: slip-deficit models

3 SDMs tested: Gaussian distribution (Schmalzle et al., 2014) and two shallow-coupled SDMs based on Lindsey et al. (2021) that taper the shear-stress rate to be non-negative down to either 30 km or 80 km depth

Markedly **different initial stress fields**, especially near the trench

Model inputs: rigidity, friction, pore fluid pressure


These choices are intentionally simple to isolate key trade-offs. E.g., rigidity changes alter both rupture dynamics and the SDM-derived initial stresses, and pore fluid pressure controls the effective normal stress and thus dynamic fault strength.

Future work: include off-fault plasticity.

 $(\gamma=0.96-0.97)$ with depth

22 dynamic rupture scenarios

 Under self-consistent initial stresses derived from SDMs, partial

- potential co-seismic slip yet reduces initial shear stress because the SDM-derived stress change depends on the elastic model: near-trench behavior is especially
- sensitive Rigidity and initial stresses must be specified jointly to avoid
- unphysical initial conditions when moving from geodesy to dynamics

Pore fluid pressure strongly modulates viability of large rupture and speed (see also Madden et al.,

JGR. 2022

Low r

10

11

12

13

14

15

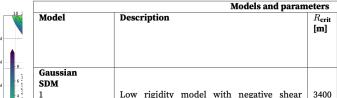
16

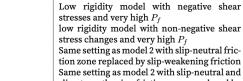
17

18

19

20

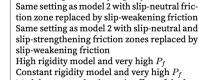

21


22

shallow-coupled **SDMs**

Low rig

 $\gamma = 0.9$


rigidity

lower P_f

high P_f

and very high P_f

and very high P_f

Reference SFs x 4 and moderate-high P_f

Reference SFs x 4 and moderate-high P_f

Reference SFs x 4 and moderate-high P_f

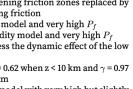
tor at center Oregon and very high P_f

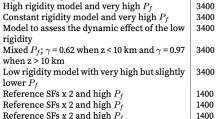
Southern epicenter and very high P_f

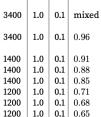
with smaller D_c and very high P_f

Margin-wide rupture with higher scaling fac-

Shallower coupling depth of 22 km and very


Negative shear stress rate tapered up to 30 km


Negative shear stress rate tapered up to 30 km


Negative shear stress rate tapered up to 30 km

Negative shear stress rate tapered up to 80 km

with constant rigidity and very high P_f

1.0

1.0

1.0

0.7

4400 1.0

3400 1.0

3400

7600

5400

5400 0.7

6200 0.7

0.1 0.97

0.1 0.97

0.3 0.97

0.3 0.97

0.3 0.97

0.3 0.98

Rigidity

simulation)

low

low

low

low

high

high

low

low

low

low

low

low

low

constant

constant

(dynamic relaxation

 $\mu_d \mid \gamma$

1.0 0.1 0.97

0.1 0.97

0.1 0.97

0.1 0.97

0.1 0.97

0.1 0.97

0.1 0.97

[m]

1.0

1.0

1.0

1.0

1.0

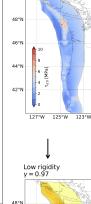
3400

3400

3400

Glehman et al., **Seismica**, 2025

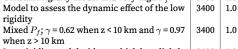
Rigidity


rupture)

low

(Dynamic

°W 123°W



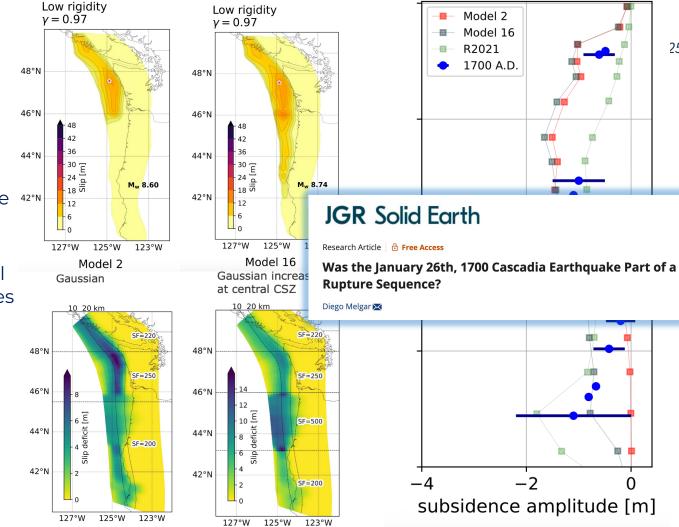
46°N

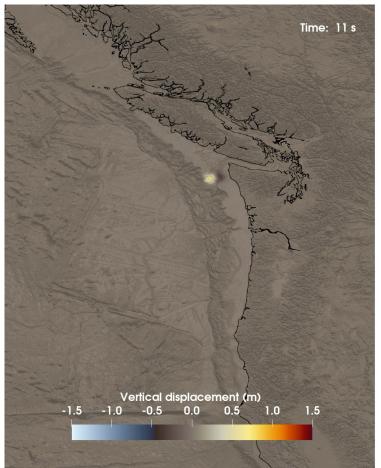
44°N

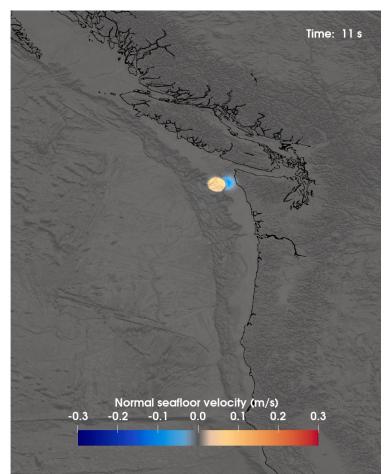
42°N

Model 16

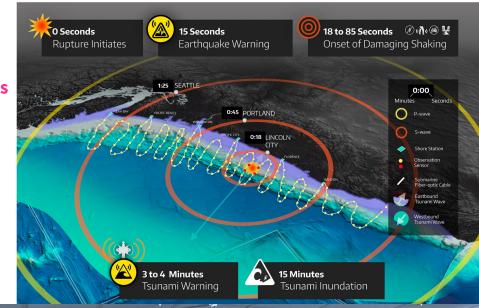
Slip deficit models






One margin-wide rupture scenario

- Margin-wide rupture requires a large central Cascadia slip deficit $(>10 \, m)$
- The central CSZ acts as the key control on through-going rupture
- Without additional central loading, dynamics ruptures tend to arrest, consistent with a **tendency toward** partial ruptures
- Reproducible workflow and open framework to feed downstream ground-motion and tsunami simulations



Henneking et al., **SC'25** Glehman et al., **Seismica**, 2025

- Conventional early-warning systems rely on simplified source models and struggle to resolve near-field tsunamis that reach shore within minutes
- New approach that couples seafloor acousticpressure data with 3-D acoustic-gravity wave simulations to infer earthquake-driven seafloor motion and predict tsunami propagation with quantified uncertainty

- Billion-parameter inverse problem governed by billions DOF forward model, requires current #1 supercomputer
- Synthetic tests based on a Mw 8.7 dynamic-rupture scenario show that 600 seafloor pressure sensors suffice to reconstruct the spatiotemporal seafloor motion and forecast surface-wave heights at 21 locations with 95 % credible intervals

See poster by Stefan Henneking

Real-time Bayesian inference at extreme scale:

A digital twin for tsunami early warning applied to
the Cascadia subduction zone

Stefan Henneking
Oden Institute
The University of Texas at Austin
stefan@oden.utexas.edu

John Camier Center for Applied Scientific Computing Lawrence Livermore National Laboratory camier [@llnl.gov

Alice-Agnes Gabriel Scripps Institution of Oceanography University of California San Diego algabriel@ucsd.edu Sreeram Venkat
Oden Institute
The University of Texas at Austin
srvenkat@utexas.edu

Veselin Dobrev

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

dobrev1@llnl.gov

Tzanio Kolev

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

kolovi @llml gov

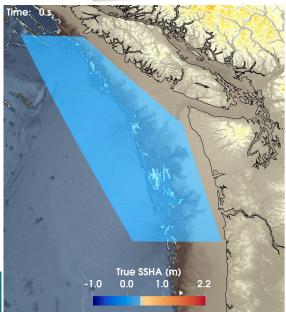
Milinda Fernando
Oden Institute
The University of Texas at Austin
milinda@oden.utexas.edu

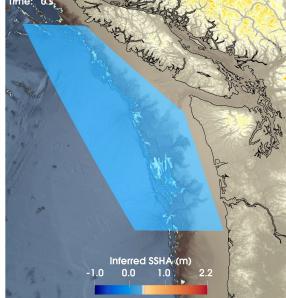
Omar Ghattas

Oden Institute, Walker Department of Mechanical Engineering

The University of Texas at Austin

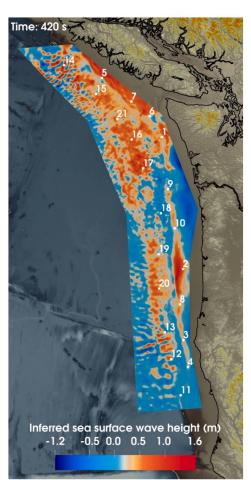
omar@oden.utexas.edu

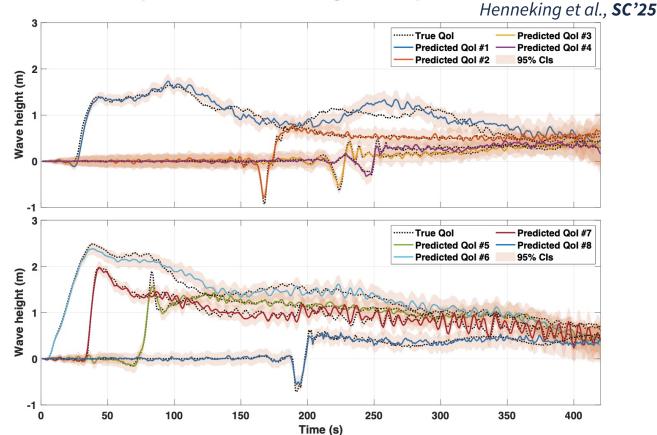

Inverse problem:


Henneking et al., **SC'25**

Given pressure recordings from sensors on the seafloor, infer the spatiotemporal seafloor motion in the subduction zone

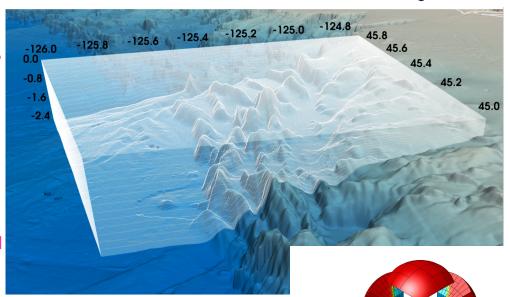
Forecasting problem:


Given inferred spatiotemporal seafloor motion, forward predict tsunami wave heights at specified coastal locations



ACM Gordon Bell Prize

Qol forecasting locations



Real-time Qol predictions with uncertainties illustrated as 95% credible intervals (CIs) inferred from noisy, synthetic data of 600 hypothesized seafloor acoustic pressure sensors for a margin-wide rupture in the CSZ

Henneking et al., **SC'25**

- The method exploits the autonomous (timeinvariant) nature of the acoustic-gravity equations to reformulate the inversion in the data space rather than parameter space
- A block-Toeplitz representation of the parameter-to-observable map enables FFTbased Hessian matrix-vector products and a complete offline-online decomposition
- Offline: one adjoint wave solve per sensor and forecast site; scaled to 43,520 GPUs on El Capitan (55.5 trillion DOF, 92 % weak and 79 % strong scaling efficiency)
- Online: exact Bayesian inversion and tsunami prediction in < 0.2 s on 512 GPUs a 10¹⁰-fold speedup over conventional conjugate-gradient solvers
- Wave heights at critical locations and their uncertainties computed in a fraction of a second

Next:

- Port to Japan & S-net
 - Optimal experimental design for optimal placement of seafloor sensors (e.g, DAS)

MFEM is a free, lightweight, scalable C++ library for finite element methods

Features

... and many more.

- Arbitrary high-order finite element meshes and spaces.
- Wide variety of finite element discretization approaches.
- Conforming and nonconforming adaptive mesh refinement.
- · Scalable from laptops to GPU-accelerated supercomputers

Structural controls on splay fault rupture dynamics in Cascadia megathrust earthquakes

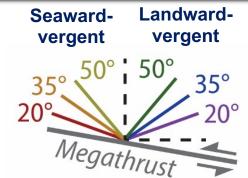
Biemiller et al., AGU Advances, in press

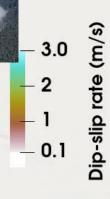
AGU Advances

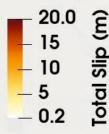
RESEARCH ARTICLE 10.1029/2025AV001812

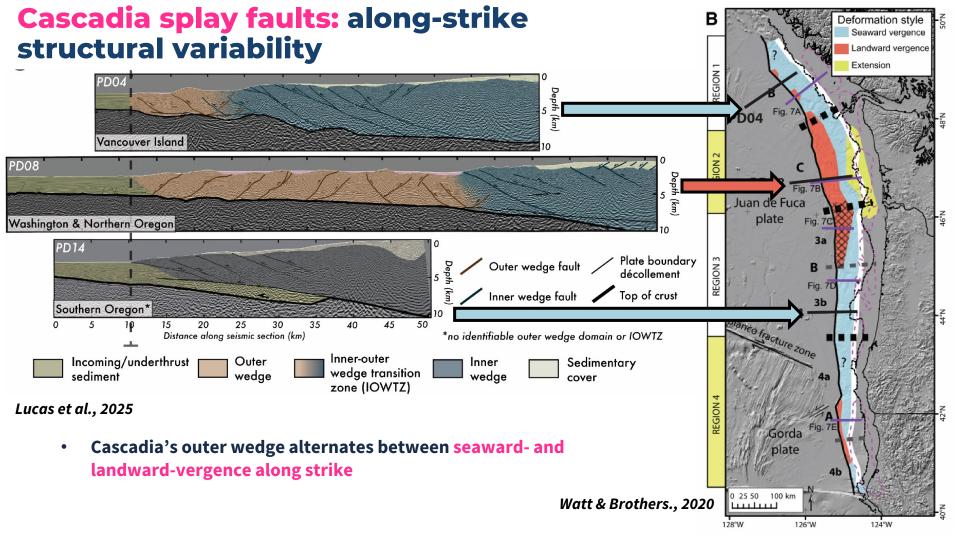
Peer Review The peer review history for this article is available as a PDF in the Supporting Information.

Key Points

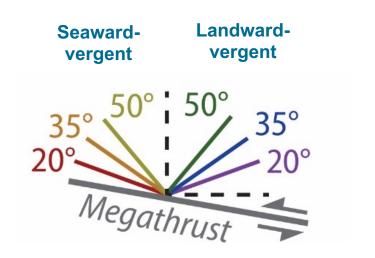

- 3D dynamic rupture models of Cascadia subduction zone earthquakes reveal coseismic competition between megathrust and splay fault rupture
- Fault geometry modulates shallow slip partitioning: gently dipping seawardvergent splays slip more than steeper, landward-vergent splays
- Distinct static and dynamic mechanisms result in dip- and vergence-dependent splay fault slip during megathrust earthquake ruptures

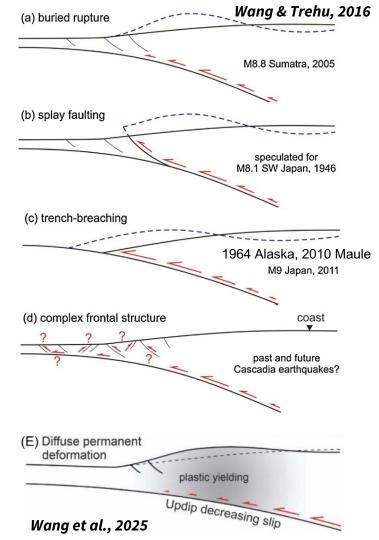

Structural Controls on Splay Fault Rupture Dynamics During Cascadia Megathrust Earthquakes


J. Biemiller¹ , A.-A. Gabriel^{2,3} , L. Staisch¹ , T. Ulrich³ , A. Dunham⁴, E. Wirth⁴ , J. Watt⁵ , M. C. Lucas⁶ , and A. Ledeczi⁶


¹U. S. Geological Survey, Geology, Minerals, Energy and Geophysics Science Center, Portland, OR, USA, ²Ins Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Je USA, ³Department of Earth and Environmental Sciences, Ludwig Maximillian University of Munich, Munich, Germany, ⁴U. S. Geological Survey, Earthquake Science Center, Seattle, WA, USA, ⁵U. S. Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, USA, ⁶Department of Earth & Space Sciences, University of Washington, Seattle, WA, USA

Abstract Great subduction earthquakes ($M_w \ge 8.0$) can generate devastating tsunamis by rapidly displacing the seafloor and overlying water column. These potentially tsunamigenic seafloor offsets result from coseismic fault slip and deformation beneath or within the accretionary wedge. The mechanics of these shallow rupture phenomena and their dependence on subduction zone properties remain unresolved, partly due to the sparsity of offshore observations of shallow megathrust earthquake deformation. Here, we analyze how offshore structure.



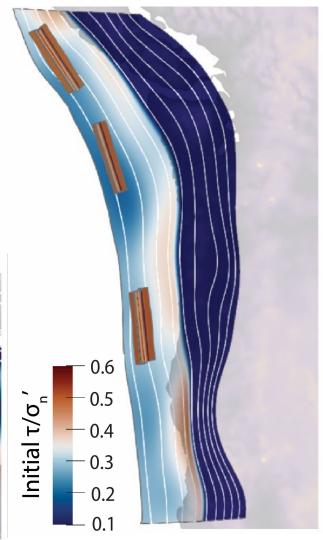


Splay fault dynamic rupture

Different dynamic rupture pathways and tsunami sources:
 How do different splay faults modulate coseismic slip
 partitioning, shallow deformation and eventually tsunami
 hazard when a megathrust earthquake reaches the shallow
 wedge?

Structural controls on splay faulting in Cascadia subduction zone earthquakes

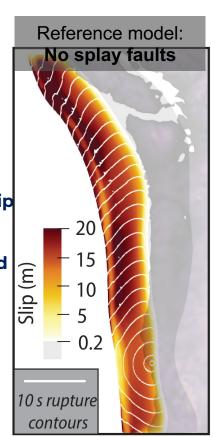
Biemiller et al., AGU Advances, in press

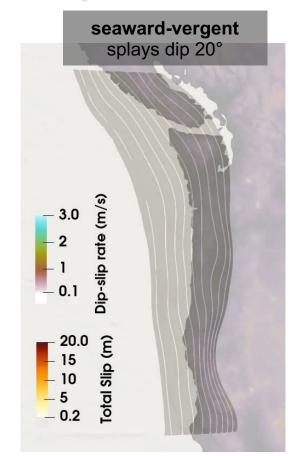

 Large (margin-wide) dynamic rupture models of Cascadia subduction zone earthquakes to study coseismic competition between megathrust and splay fault rupture

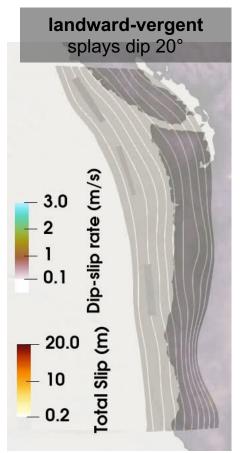
 Fault geometry modulates shallow slip partitioning: gently dipping seaward-vergent splays slip more than steeper,

landward-vergent splays

 Distinct static and dynamic rupture mechanics result in dip- and vergencedependent splay fault slip during megathrust earthquake ruptures

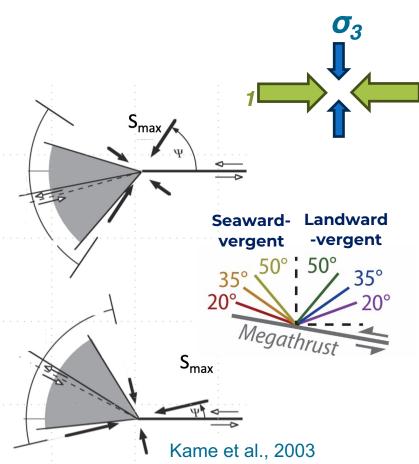





Structural controls on splay faulting in Cascadia subduction zone earthquakes

Shallow rupture partitions between the megathrust and splays; more splay slip means less updip interface slip

Shallow-dipping and seaward-vergent splays are more dynamic rupture-viable and take more slip

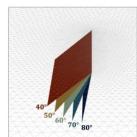


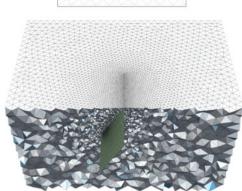
Structural controls on splay faulting in Cascadia subduction zone earthquakes

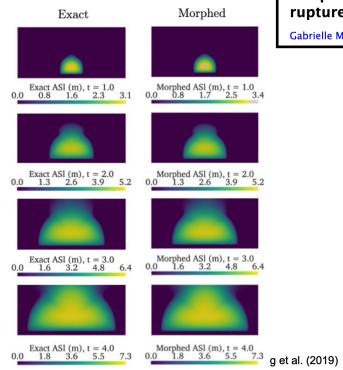
Andersonian thrust-faulting:

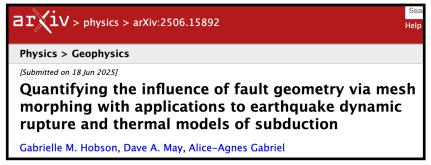
Biemiller et al., AGU Advances, in press

- Shallowly dipping splays better-oriented in the classic, quasistatic sense
- Seaward-vergent splays better-oriented for positive dynamic stressing ahead of updip-propagating rupture forward-branching is dynamically favorable
- Applied to Cascadia, we expect stronger localization of coseismic uplift over splays offshore Vancouver Island and in southern Oregon where sea-award vergence dominates, and more distributed uplift involving both splays and the deformation front offshore Washington where landward-vergence dominates

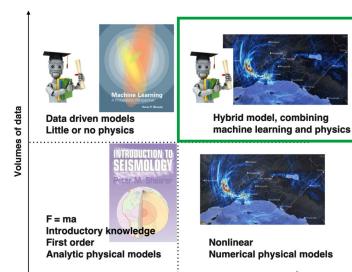

Near-Instantaneous physics-based reduced-order modeling



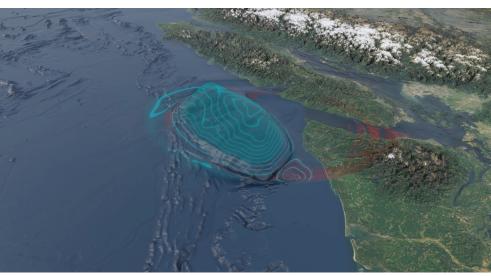

Hobson et al., 2025


Surface displacement from dynamic rupture simulations

108 x faster!



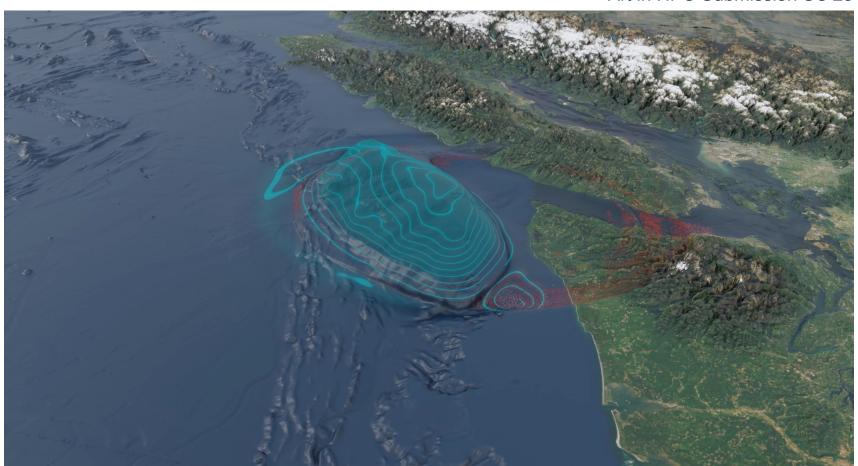
... just accepted in G3


Amount of knowledge

www.alicegabriel.com

Summary

- In our 3D dynamic rupture simulations, with (1D) depth-dependent rigidity and pore fluid pressure, informed from geodetic slip-deficit models, tend to favor partial ruptures; margin-wide rupture is only possible when elevating central Cascadia's slip deficit
- Splay faults and the megathrust compete for coseismic slip, gently dipping seaward-vergent splays slip more than steeper landward-vergent ones, and the underlying drivers are a combination of static alignment with the tectonic stress field and dynamic forward-branching as rupture nears the free surface
- A new digital-twin framework enables real-time probabilistic tsunami forecasting for near-field Cascadia dynamic rupture-tsunami scenarios, demonstrating the feasibility of Bayesian data assimilation at exascale for Earth-system hazard



Henneking et al., SC'25 Glehman et al., Seismica, 2025 Biemiller et al., AGU Advances, in press

Thank you! Questions?

Art in HPC Submission SC'25

