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A deep denoising algorithm targeting oceanic noise in seafloor seismometer data 

Joseph Byrnes, Northern Arizona University.  

 I proposed to improve the recovery of signals of interest recorded in ocean bottom seismic data 
with machine learning. Subduction zones represent a major hazard to large population centers, but 
typically lie offshore. Seismic data collected offshore are both intensive to collect and feature unique 
noise sources that can obscure the signals of interest. Computational approaches to maximizing return 
require no additional cost to deployments and can be applied to existing datasets. This project tailored 
neural networks to different types of ocean bottom seismic data. The original proposal was to develop 
denoising techniques and to evaluate if the denoised data are reliable for routine measurements on local 
earthquakes. The algorithms are overall successful at their assigned task, but networks that make direct 
measurements are preferred over generic denoising techniques for some critical applications.  

• Did you accomplish what you set out to with this project?  

 Yes (mostly) – but the proposed technique shows limitations.   

The foundation of this project was to develop denoising algorithms for local earthquakes (that is, 
earthquakes within approximately 100 km of the recording station), to evaluate if denoising is useful or 
misleading, and then to explore how well techniques generalizes to other types of data such as tremor or 
teleseismic earthquakes. Supplemental funds were provided at NAU to extend the project to active source 
seismic data recorded on OBSs using the same workflow. The network I proposed to use was the short-
time fourier transform (STFT) based approach described in Thomas et al., 2023 along with noise sampled 
in windows defined by Janiszewski et al., 2023, and to explore the potential for using the pressure 
channels to enhance machine-learning applications above what can be done on land. A purely time-
domain approach was ultimately included as well (Yin et al., 2022), along with a novel design that 
operates on the discrete wavelet transform (DWT). All three approaches are natively multi-channel.  

Two datasets were used for training the two branches of the project (following the supplemental 
funds for active source data). For local earthquakes, the PNW earthquake dataset (Ni et al., 2023) 
provided approximately 30k high signal-to-noise ratio signals for earthquaks. Additionally, about 100k 
samples of noise from broad-band OBSs deployed in Cascadia were collected from windows of time 
provided by H. Janiszewski. For active source data, the training set had to be built from scratch. 350k high 
signal-to-noise ratio arrivals from the R/V Langseth were collected by an automated approach along with 
440k samples of OBS noise across 18 active-source experiments.  

A problem arose here in which datasets of earthquakes recorded on OBSs for training AI networks 
have been collected and published, but almost none of these collected earthquakes have high signal-to-
noise ratios below about 2.5 Hz on all components but especially on the pressure channel, precluding the 
use of the pressure channel for training denoisers (differential pressure gauges have rapidly decreasing 
sensitivity above 2.5 Hz and hence often show no signal, even when the seismic data are excellent). 
Pressure data was fully included for active-source data, as the instruments in those experiments use a 
hydrophone instead of a differential pressure gauge and the signal is concentrated above 3 Hz.  



 I found that denoising networks can be 
successfully trained and can perform well for 
waveform reconstruction - but can be 
unreliable. Denoising networks reconstructs 
the bulk waveform, but the most important 
part is the first arrival and this small portion 
can contribute very little the total L2 misfit that 
the networks aim to minimize. Two examples 
are shown in Figure 1. For a mild denoising 
example, time-domain, wavelet, and STFT 
methods correctly reconstruct the waveform 
but the performance is only marginally better 
than simple bandpass filtering, as the ocean 
noise is mostly long period. A more difficult 
denoising target, in the bottom panel of Figure 
1, shows that the time-domain and wavelet 
networks greatly outperform a simple filter but 
do not necessarily recover the important first 
arrival as well as the coda. In general, the STFT 
denoiser performed poorly but this is likely due 
to this network having far more parameters 
than the other two, and the PNW training set, 
while large, may not have been large enough for 
this network style.  

The same issue arises with first arrivals in 
active source data, as shown in Figure 2. This is 
an extreme example – the vast majority of 
denoised waveforms for the active source data 
are excellent. The RMS of the misfit to denoised 
picks to the true picks are only 86 ms (at the 
same signal-to-noise ratios used for training), 
while the example in Figure 2 is off by 550 ms. 
However, this set of misfits has a kurtosis of 26 
(a normal distribution has a kurtosis of 3), 

indicating a very heavy-tailed distribution driven by outliers as in Figure 2.  

• If not, what did you do differently and how did you account for the changes?  

 Direct picking networks are more reliable than denoising networks for certain critical parameters.  

A network for direct measurements with errors was trained in parallel with the denoising networks. 
The training sets contain the information of interest – arrival times for the active source data, and arrival 

 

Figure 1. Denoising examples. Example in the top 
panel is easy to denoise, but barely outperform a simple 
filter. In the bottom filter, two networks partly recover 
the waveform, but distort the first arrival.  



times and first-motion polarities are 
cataloged along with waveform in the PNW  
dataset; amplitudes were calculated on 
the fly. The direct measurement network is 
the same as the time-domain network, 
except with the final deconvolution layers 
replaced by a transformer that pools 
information to produce discrete 
information (along with uncertainties, 
calibrated by using negative log likelihood 
as the loss function for picks and 
amplitudes and binary cross entropy for 
polarities). A wavelet approach was tested 
but failed to detect first-motion polarities.  

Figure 3 compares all the metrics 
of interest for local earthquakes and 
compares the performance of simple 
filtering, neural networks that operate on 
data on time-domain, DWT, and STFT data, 
along with measurements from the direct picking network. Waveform reconstruction is shown as 
explained variance (EV), with 1 implying perfect reconstruction and 0 meaning no correlation between the 
target and denoised traces. Neural networks work well at waveform reconstruction and outperform a 
bandpass filter, though note that their relative performance may represent the relative size of the 
networks – the larger STFT based network also has worse validation loss relative to training loss and would 
likely work better if the training set were expanded.  Three quantities at the first arrival are evaluated in the 
following three panels – arrival times, (log) amplitudes, and the polarity of the first arrival. All denoising 
techniques are shown to sometimes distort the first arrivals and direct picking on the noisy waveforms 
always outperforms denoising. This plot is technically accurate but likely overestimates the 
performance of the denoisers – the bottom panel in Figure 1, for example, technically features an accurate 
first motion polarity but would be hard for an analyst to identify independently. For some applications, the 
waveform is what is needed – but for general earthquake analysis, the direct approach is likely preferrable.  

For active source data, a direct picker solves the outlier problem found with the active source 
denoiser – RMS misfit to the test set is 50 ms and the kurtosis is reduced to only 6 (a normal distribution 
has a kurtosis of 3). A secondary network was trained on top of this first network to pick relative arrival 
between traces, and a system of linear equation solves for a combined arrival time. An application is 
shown in Figure 4.  

• What is the next step for development of this project/ priority? 

  The text of the original proposal was focused on application to local earthquakes, and then 
generalization would be explored. Generalization across classes of seismic signals is terrible – 
teleseismic events are not recognized, and the active source networks cannot identify earthquakes nor 

 

Figure 2. An example of misleading denoising for 
active source data. Red is a clean arrival of a shot from 
the R/V Langseth, contaminated with noise in black. 
Blue is a denoised trace.  



vice versa. The proposal specifically mentioned attempting to detect non-volcanic tremor and based on 
these results, the networks are currently being adapted to detect non-volcanic tremor on OBSs by a 
master’s student at UT Dallas, where the PI is starting a new position in the Fall. Similar efforts will also be 
adapted to teleseismic data, for which collecting the training sets and any potentially good data on the 
pressure needs will need to be explored – semi-supervised learning and/or generative networks are both 
potential avenues for pushing machine-learning techniques over this hump. Application of the active 
source pickers is also underway, with the CASIE dataset from Cascadia a prime target.  

• Where did you publish/ present on this work? 

Figure 3. Comparison of different approaches along 4 metrics. From top to bottom, metrics 
shown are the explained variance, the accuracy of the first arrival, the log of amplitude of the P 
wave, and the polarity of the first motion 



Both the local earthquake and active source networks described above are in prep for a target of 
2025 submission. Results are mature, as detailed above, but some work remains to finalize into 
publications. For publication all four networks local earthquake networks will be training on a much larger 
training set and reevaluated. The results have been presented in four seminars by the PI, 3 at universities 
and at the SSA-funded Arizona Collaborative Consortium for Earth and Space Science. 
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Figure 4. Example of picking active source data with relative arrival times included. Data are 
vertical component seismograms from the Santorini experiment recorded on OBS 103, Line 5. Red 
bars are machine-learning picks, and shaded regions are the predicted 1-sigma errors.  
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