Hydrogeology of Subduction Forearcs: Fluids as Agents of Mechanical and Transport Processes

Fluid-mediated processes

- Effective stress controls fault and rock shear strength.
- Effective stress also modulates stability of slip - and frictional healing.
- Compaction state of fault and wall rocks are key to a host of physical properties.
- Pressure drives flow & transport of volatiles, heat, and solutes

An Evolving View of the Subduction Megathrust

- A "spectrum" of fault slip behavior discovered in the last two decades with increased monitoring and instrumentation.
- Recognition of spatiotemporal complexity & patchiness of slip behavior and locking within transition zones and seismogenic zone.

Fundamental Questions:

- What controls these behaviors globally?
- Are they predictable and persistent?
- What are the associated *in situ* rock properties and conditions?
- What role do fluids play?

Observations of transport and focused flow reveal a dynamic hydrological system

Indirect & ancient evidence for elevated pore pressure and clues about plumbing and flow localization:

But quantitative constraints on in situ pressure & flow paths are sparse!

Outline

I. What do we know about Pore Pressure and Effective Stress?

- Insights gained from the lab and drilling
- Mapping regional geophysical observations to stress and pressure
- What drives pressure? Integration of numerical models and observations
- Links to fault slip behavior

2. Flow Pathways, Plumbing, and Localization of Flow

- Hydraulic architecture observations and models
- Flow rates, tapping deep fluids & volatiles
- Evidence and mechanisms for transient flow

The Whirlwind Tour

- Draw upon several examples.
- Observations from drilling, coring, seeps, and seismic imaging.
- Insights from laboratory experiments.
- Modeling to investigate processes and feedbacks.

Outline

I. What do we know about Pore Pressure and Effective Stress?

- Insights gained from the lab and drilling
- Mapping regional geophysical observations to stress and pressure
- What drives pressure? Integration of numerical models and observations
- Links to fault slip behavior

2. Flow Pathways, Plumbing, and Localization of Flow

- Hydraulic architecture observations and models
- Flow rates, tapping deep fluids & volatiles
- Evidence and mechanisms for transient flow

What Drives Pressure and Flow? Some Key Concepts

- Pore pressure is generated by compression of fluid. This can be driven <u>mechanically</u> or by <u>addition of fluid mass</u> to existing pore space.
- If consolidation takes place, this means there is a degree of drainage. "Compaction fluid sources" don't drive pressure. They are a result of dissipation.
- Pressure drives flow. Significant flow implies dissipation of pressure at the source.

Direct Measurement of pore pressure:

CORKs: Long-Term Monitoring of pressure in subseafloor wells

Laboratory Tests: Deformation, Permeability, and wavespeeds: Mapping from observations to state; parameterize models

Data from drilling (sonic logs, porosity, density): Sediment constitutive behavior, stress indicators

The outer-most forearc: Let's start beneath the décollement.

- Near undrained conditions.
- Consistent with lab and CORK observations.
- Despite slow conv. rate (~2.7 cm/yr), disequilibrium compaction is promoted by clays and low-perm.

Nankai Example: Stress and Pressure from Geophysical Data

- Low Vp zones extend for > 100 km along-strike.
- Interpreted to reflect arrested consolidation and fluid overpressure.
- Map from Vp → porosity
 → effective stress state & pore pressure.
- Sediment constitutive behavior is the key to link the observations and state variables.

Triaxial Testing:

- Use core samples of subduction "inputs"
- Varied stress paths, including failure at critical state; concurrent P- and Swavespeed measurements

Compressional Velocity-Porosity Relation

Constitutive behavior: Porosity-mean stress

Regional-scale sequentially coupled models of fluid flow and pressure

For more sophisticated modeling approaches: see

Depth (km) 5

porosity

field

Insight from 2-D models of loading & fluid flow: Feedbacks between hydrologic and mechanical processes

Permeability and the taper angle of orogenic wedges

Sediment Thickness and the taper of orogenic wedges

A Global View: Fundamental Factors Controlling Pore Pressure (and Crustal Strength)

[American Journal of Science, Vol. 295, June, 1995, P. 742–786] ABNORMAL PRESSURES AS HYDRODYNAMIC

> **PHENOMENA** C. E. NEUZIL

- *ГL/K*: dimensionless ratio of "geologic forcing" to hydraulic impedance.
- Systematic relationship to overpressure magnitude; excess pore pressure is a <u>dynamic phenomenon</u> governed by balance between competing rates.
- Ultimately mediates strength of the brittle crust in regions where hydrologic processes dominate.

A Global View: Fundamental Factors Controlling Pore Pressure (and Crustal Strength)

[AMERICAN JOURNAL OF SCIENCE, VOL. 295, JUNE, 1995, P. 742–786] ABNORMAL PRESSURES AS HYDRODYNAMIC PHENOMENA

C. E. NEUZIL

- **ΓL/K**: dimensionless ratio of "geologic forcing" to hydraulic impedance.
- Systematic relationship to overpressure magnitude; excess pore pressure is a <u>dynamic phenomenon</u> governed by balance between competing rates.
- Ultimately mediates strength of the brittle crust in regions where hydrologic processes dominate.

Links to Fault Slip Processes: Coupling and Slow Slip Events at the Hikurangi Margin

Links to Fault Slip Processes: Coupling and Slow Slip Events at the Hikurangi Margin

Fluid influx to the shallow SSE region and megathrust

See Andrew Gase's talk tomorrow

Gase et al., 2023

Fluid influx to the shallow SSE region and megathrust

- Subduction of >2 km-thick clay-rich, heavily altered volcanic breccia/sand/mud.
- Transports large volume of water into the subduction zone and SSE source region.

Velocity (km/s)

Manifests as regionally extensive low-velocity ٠ "blanket" on the Hikurangi Plateau.

Gase et al., 2023 Probability (%) 0.5 0.5-3 Depth (km) Depth (km) 2 1 Australian Plate Indo-Australian I 1.5 1.5plat 2+ 0 2 20 40 50 2 3 5 6 10 30

3

2

1

60

H₂0 vol. (%)

- Porosity loss revealed by increasing Vp is almost entirely compaction-driven.
- Thermodynamic models show that H_2O • entering the SSE source region is mostly mineral-bound.
- Dehydration down-dip is likely source for fluids in SSE zone (So Ozawa's talk Friday)

40

30

20

10

Water Content (Vol%)

Links to Shallow SSE along the Nankai Margin off Kii: Detailed constraints on slip in recurring events

Links to Shallow SSE along the Nankai Margin off Kii: Detailed constraints on slip in recurring events

- SSE source fault and high slip zone spatially correlated with zone of low Vp and <u>quantified</u> <u>ambient high pore pressure</u>.
- This region is characterized by low overall stress – both surrounding the décollement near the trench and in the deep interior of the prism.

Outline

I. What do we know about Pore Pressure and Effective Stress?

- Insights gained from the lab and drilling
- Mapping regional geophysical observations to stress and pressure
- What drives pressure? Integration of numerical models and observations
- Links to fault slip behavior
- 2. Flow Pathways, Plumbing, and Localization of Flow
 - Hydraulic architecture observations and models
 - Flow rates, tapping deep fluids & volatiles
 - Evidence and mechanisms for transient flow

Hydraulic Architecture:

- BSR & surface heat flow as indicators of advection and flow rate.
- Document localized flow along faults and diffuse flow in matrix.

- Direct flow rate measurements and geochemical indicators of deeplysourced fluids highlight the role of faults and permeable outcropping strata as key conduits for both transport & dewatering.
- In situ fault permeability measurements while rare support this model.

Zwart et al. (1996)

Fault conduits: direct permeability measurements

Bekins et al., 2011

- In situ borehole measurements though few - indicate that primary faults are 2-6 orders of magnitude more permeable than matrix.
- Repeat injection tests document nonlinear stress-dependence of fault zone permeability.

Fault conduits: Field observations and models at Costa Rica

• Seep geochemistry indicates that faults tap deeply sourced (low-T metamorphic) fluids.

100

- Flow rates estimated from I-D chemical profiles via simple advectiondiffusion models.
- 2-D numerical models that incorporate loading and clay dehydration to generate pressure suggest fault permeabilities >10⁻¹⁴ m² are required to deliver these fluids from depth.

Hydraulic Architecture: Tapping Deep Fluids

- Fluids within sediments and slab are progressively altered by diagenesis and metamorphism. [CI] and [B] are two example tracers (also hydrocarbons, Li, etc...).
- With increasing burial, metamorphic sources become more dominant. This is consistent with hydrologic models (e.g., Lauer & Saffer, 2015).
 - Focused advection along permeable pathways provides a "window" to the slab and clues about plumbing.

Evidence for time-varying fault permeability

- Chemical anomalies centered on fault conduits require transient flow.
 Simple models suggest timescales of 10's-100's kyr.
- Fluid budgets offer a second constraint. Observed flow rates at seeps require that conduits are open only a fraction of the time.
- Emerging picture is one with conduits on the fault surface that shift over time.

What causes transient flow? Intrinsic vs. Extrinsic mechanisms

- Stress-dependent permeability can give rise to spontaneous solitary waves – increased k and flow rate (Kidiweli et al. poster). 5 101 High V₂/V₃ A potential mechanism for SSE (Ozawa & Dunham, 2024), ntinuou: slip Chapter 20 Fault Stress States, Pore Pressure Distributions, and the Weakness of the Rice (1992) San Andreas Fault Bourlange & Henry (2007) $k_0 = 5 \times 10^{-13} \text{ m}^2$ 4500 € 5000 · С 5500 t = 330 years € 5000 550 t = 1440 years 16 000 12 000 8000 8000 12 000 20 000 16 000 12 000 8000 4000 4000 4000 4000 8000 12 000 0.5 m x (m P* (MPa 12 10-15 10-14 10-13 10-12
- Continuous slip SSE source locked Locked zone Low fluid input to SISZ from Fault valving from slow • slip events could release pressure cyclically (Warren-Smith et al., 2019). • Permeability increase SSE from damage during & after coseismic slip (e.g., Normal faults Tsuji et al., 2013; see also Strike-slip faults become inactive Patrick Fulton's talk – next!). After the earthquake in 2011 Before the earthquake in 2002 d

0.5 m

Horizontal angle of vi

Key Points & Outstanding Questions

- High pore pressure is common the result of a dynamic balance between driving mechanisms and dissipation.
- High pore pressure is linked to SSE. This is better constrained in the outer forearc than for deep SSE (see Mann et al. poster).
- Flow is transient and localized. Conduits are efficient *transport* pathways, but dissipate *pressure* only locally.
- Deep fluids provide a window to the slab. Better links to hydrologic models are a key next step.
- Improved quantification of stress & pressure from geophysical imaging/surveys is needed.
- Many open questions remain in the realm of fluidchemical-geomechanical interaction.

[AMERICAN JOURNAL OF SCIENCE, VOL. 295, JUNE, 1995, P. 742-786]

ABNORMAL PRESSURES AS HYDRODYNAMIC PHENOMENA

C. E. NEUZIL

Nomogram of "Geologic forcing": Fluid production or its equivalent, units of t⁻¹

The nucleation of unstable slip can be framed in terms of a balance between the (1) change in frictional resistance, and (2) rate of elastic unloading of stored stress, in response to incremental slip.

 $K < K^{c} =$

σ_n' (b - a)

Elevated pore pressure can drive an unstable system toward slower failure modes, and ultimately promote stable sliding, via its control on effective stress.

Interrogating samples about in situ stress: Uniaxial Consolidation

Interrogating samples about in situ stress: Uniaxial Consolidation

Example Consolidation Result

- Pc' encodes
 "memory" of in situ vertical
 effective stress.
- Cc (slope) defines

 constitutive
 behavior –
 mapping porosity
 to vertical effective
 stress.

Costa Rican Margin: Multi-pronged pressure prediction

- Partly drained behavior: ~50% drained at top, undrained at base. Suggest upward drainage to permeable plate boundary fault.
- Drainage-induced downward migration of mechanically weakest horizon $\rightarrow \underline{downstepping}$.
- Pressures from Pc' and those from labderived Cc are in close agreement.

Scale-Dependent permeability in the Nankai Accretionary Wedge

Kinoshita & Saffer (2018)

- Strong scale-dependence of permeability in the inner accretionary prism offshore Kii Peninsula

 determined from inadvertent cross-hole
 "experiments".
- Consistent with sampling of permeable fractures and faults at scales of ~100 m.
- Values of $k = \sim 10^{-14} 10^{-12} \text{ m}^2$ are commonly reported across many studies.

Mechanical Effects of permeable faults

- Upper plate faults likely to affect the plate interface – drainage at their roots leads to heterogeneity, increased effective stress locally, potentially onset or localization of seismicity.
- Drainage may also mediate downstepping and fault initiation in a complex feedback.

I-D coupled models of pore pressure evolution& fault downstepping: Nankai Margin

- Coupled model of loading, compaction,& flow parameterized by lab permeability and consolidation data, and <u>constrained</u> by depthaveraged pressure estimates.
- Predicts downward migration of weakest
 horizon due to drainage.

I-D coupled models of pore pressure evolution& fault downstepping: Nankai Margin

- Coupled model of loading, compaction,& flow parameterized by lab permeability and consolidation data, and <u>constrained</u> by depthaveraged pressure estimates.
- Predicts downward migration of weakest
 horizon due to drainage.

Fault behavior: Downstepping and change in reflection amplitude at ~30 km

A weak and overpressured offshore megathrust

- Highly elevated pore pressure (>70% of lithostatic) & low stress are common in the outer forearc. Modulated by dynamic balance between rates of loading & diffusion.
- Poor drainage persists to 10's of km from trench Maria's talk tomorrow
- Quantifiable mechanism to explain weak subduction megathrusts. <u>Potential</u> <u>relationship to shallow SSE and aseismic slip</u>; <u>down-dip transition to frictional instability</u>.
- Yet, could promote rupture propagation to the trench.