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Observations of transport and focused flow reveal a dynamic
hydrological system

v * Focused flow, chemical, and heat transport — along primary
, 574‘/ rusts o .
o faults and via mud volcanoes.

* Deeply-sourced fluids at seeps and in boreholes provide a
window to processes and conditions atop the slab.
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* Transient flow is required to explain many observations.The e ver
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mechanisms/drivers are not well known.
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* Fluid budgets include focused flow and diffuse dewatering
through matrix.




Indirect & ancient evidence for elevated pore pressure and
clues about plumbing and flow localization:

Veining in exhumed fault rocks: ="
Kodiak, AK (C M&ore) e

Carbonate & seepage at
Middle America trench
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Direct Measurement of pore pressure:
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The outer-most forearc:
Let’s start beneath the décollement.
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Site 1044: Barbados

Barbados Example:

Define constitutive behavior
using field data: porosity
measurements from drilling at
reference site 1044

void ratio

effective stress (MPa)
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* Near undrained
conditions.

Consistent with lab
and CORK
observations.
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Nankai Example: Stress and Pressure from Geophysical Data

Low Vp zones extend for
> 100 km along-strike.

Interpreted to reflect
arrested consolidation and
fluid overpressure.

Map from Vp = porosity
- effective stress state &
pore pressure.

Sediment constitutive

behavior is the key to link
the observations and state
variables. ' - o
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Triaxial Testing:

Use core samples of subduction “inputs”
Varied stress paths, including failure at critical state; concurrent P- and S-

wavespeed measurements
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Kitajima & Saffer, 2012
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Compressional Velocity-Porosity Relation

Velocity is primarily
sensitive to porosity;

largely independent of
stress path




Constitutive behavior: Porosity-mean stress

void ratio

Porosity — and mean
stress - at a given
depth depend strongly
on stress path.

=

=

1

N —
Kitajima & Saffer, 2012 1

" 5000 10000 15000 20000 25000 30000

effective mean stress (p'; kPa)




Fluid overpressure and
low effective stress along
and surrounding the
megathrust offshore Kii
Peninsula

VLFE locations (Ito and Obara, 2006)

(Ps- Pr)/(P;- Py)
0 = hydrostatic
| = lithostatic

Kitajima & Saffer, 2012
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High Fluid Pressure is
Common

Quantitatively consistent
with independent
predictions from forward
models.

Tobin & Saffer (2009)
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Insight from 2-D models of loading & fluid flow: Feedbacks
between hydrologic and mechanical processes

Models e

“Hinterland” Normal faults “Foreland”
(hinterland collapse)
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Permeability and the taper angle of
orogenic wedges

Models | Data
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Sediment Thickness and the taper of
orogenic wedges

Data

Saffer & Bekins, 2006
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A Global View: Fundamental Factors
Controlling Pore Pressure (and Crustal Strength)

[AMERICAN JOURNAL OF SCIENCE, VOL. 295, JUNE, 1995, P. 742-786]

ABNORMAL PRESSURES AS HYDRODYNAMIC
PHENOMENA

C. E. NEUZIL

I' L/K: dimensionless ratio of “geologic
forcing” to hydraulic impedance.

o

©
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Systematic relationship to overpressure
magnitude; excess pore pressure is a

dynamic phenomenon governed by
balance between competing rates.

(1) uonaLy sa9aYd

Ultimately mediates strength of the brittle
crust in regions where hydrologic
processes dominate.

Saffer & Tobin, Annual Reviews (2011



A Global View: Fundamental Factors
Controlling Pore Pressure (and Crustal Strength)

[AMERICAN JOURNAL OF SCIENCE, VOL. 295, JUNE, 1995, P. 742-786]

ABNORMAL PRESSURES AS HYDRODYNAMIC
PHENOMENA

C. E. NEUZIL

I' L/K: dimensionless ratio of “geologic
forcing” to hydraulic impedance.

Systematic relationship to overpressure
magnitude; excess pore pressure is a
dynamic phenomenon governed by
balance between competing rates.

Ultimately mediates strength of the brittle
crust in regions where hydrologic
processes dominate.
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Links to Fault Slip Processes:
Coupling and Slow Slip Events
at the Hikurangi Margin
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Mean effective stress (MPa)
Bassett et al., 2014
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Fluid influx to the shallow SSE region and megathrust

See Andrew Gase’s talk tomorrow
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Fluid influx to the shallow SSE region and megathrust

* Subduction of >2 km-thick clay-rich, heavily
altered volcanic breccia/sand/mud.

* Transports large volume of water into the
subduction zone and SSE source region.

* Manifests as regionally extensive low-velocity
“blanket” on the Hikurangi Plateau.
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* Porosity loss revealed by increasing Vp is
almost entirely compaction-driven.

Thermodynamic models show that H,O
entering the SSE source region is mostly
mineral-bound.

* Dehydration down-dip is likely source for

fluids in SSE zone (So Ozawa’s talk Friday).
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Links to Shallow SSE along the Nankai Margin off Kii:
Detailed constraints on slip in recurring events

 SSE source fault and high slip
zone spatially correlated with
zone of low Vp and guantified
ambient high pore pressure.

Tremor

* This region is characterized by
low overall stress — both
surrounding the décollement
near the trench and in the
deep interior of the prism.

-30

Edgington, Saffer, & Williams (in press)







Hydraulic Architecture: Sp—

Davis et al. ( | 994) 1050 s (COTT(%‘ S 115!

o Probe measurement 160 ( a)

e Estimates from
Gas Hydrate depth
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* BSR & surface heat

flow as indicators of
advection and flow
rate.

LINE 85-02

V.E.=4.5

DEPTH (s)

e Document localized
flow along faults and
diffuse flow in matrix.
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* Direct flow rate measurements and geochemical indicators of deeply-
sourced fluids highlight the role of faults and permeable outcropping strata
as key conduits for both transport & dewatering.

* In situ fault permeability measurements — while rare — support this model.
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no splay faults

flow velocity [cm/yr]

Depth (km)
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Barbados Costa Rica
sites 671, 948 site 1040
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What causes transient flow? Intrinsic vs. Extrinsic mechanisms

* Stress-dependent permeability can give rise

to spontaneous solitary waves — increased k
and flow rate (Kidiweli et al. poster).

* A potential mechanism for SSE (Ozawa &
Dunham, 2024),

Chapter 20

Fault Stress States, Pore Pressure
Distributions, and the Weakness of the |Rijce (/1992)

San Andreas Fault Bourlange & Henry (2007)

ko=5x10""%m?

£ 6000 1= s & t=1440 years

20000 16000 12000 8000 4000 0 4000 8000 12000 20000 16000 12000 8000 4000 0 4000 8000 12000
X (m) X (m)

T T ] P (MPa) [ T s —— Y0
o 2 4 6 8 10 12 14 16 18 20 1018 10-17 10-16 10-15 10-14 10-13 10-12

* Fault valving from slow
slip events could release
&N i
Tl o pressure cyclically
(Warren-Smith et al,, 2019).

* Permeability increase
from damage during &
after coseismic slip (e.g.,
Tsuji et al., 2013; see also
Patrick Fulton’s talk — next!).

P, drops within fault
- ‘ zones as fractures
3 are opened by SSE

After the earthquake in 2011
0.5m

/Seaward side

Horizontal angle of view
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[AMERICAN JOURNAL OF SCIENCE, VOL. 295, JUNE, 1995, P. 742-786]

ABNORMAL PRESSURES AS HYDRODYNAMIC
PHENOMENA

C. E. NEUZIL

o™ '10'13 .1042 (2 ‘10'10
K,ms”

Hydraulic conductivit

<
Jrus)
(e70]
C
i)
i
o+
©
o
Q
(o]0)]
q°)
=
O
S
O




Coefficient of Friction

X 1 Slip

\

Displacement ]

T
Velocity Steps

|
-

Pore  Fluid

Fluid Inlet

Outlet Pore
Fluid
Outlet

Granular Gouge Layer

p2738, Site 1174B, 80R-3, 902 mbsf

Tl
| Slide-Hold-Slide

5 10

Shear Strain

15

Coefficient of Friction

a*In(viv,)

Load Point Displacement

Coefficient of Friction

I
3 pum/s : 10 pm/s

a: 0.0032

b: 0.0010
Dc: 21.6 pm
a-b: 0.0022

Experimental Data
Model Inversion

10.8 1" 1.2 1.4 1.6

Load Point Displacement (mm)




Coefficient of Friction

X 1 Slip

\

Displacement ]

T
Velocity Steps

|
-

Pore  Fluid

Fluid Inlet

Outlet Pore
Fluid
Outlet

Granular Gouge Layer

p2738, Site 1174B, 80R-3, 902 mbsf

Tl
| Slide-Hold-Slide

5 10

Shear Strain

15

Coefficient of Friction

a*In(viv,)

Load Point Displacement

Coefficient of Friction

I
3 pum/s : 10 pm/s

a: 0.0032

b: 0.0010
Dc: 21.6 pm
a-b: 0.0022

Experimental Data
Model Inversion

10.8 1" 1.2 1.4 1.6

Load Point Displacement (mm)










Pore pressure
defined from known
total stress
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Costa Rican Margin: Multi-pronged pressure prediction

* Partly drained behavior: ~50% drained at top, undrained at Site 1040
base. Suggest upward drainage to permeable plate

boundary fault.

Drainage-induced downward migration of mechanically
weakest horizon = downstepping.

Pressures from Pc’ SW
and those from lab-

derived Cc are in

close agreement.

4 6 8 10

Saffer, 2003
pressure (MPa)
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|-D coupled models of pore pressure evolution
& fault downstepping: Nankai Margin
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|-D coupled models of pore pressure evolution
& fault downstepping: Nankai Margin
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parameterized by lab permeability and
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Fault behavior: Downstepping and change in

reflection amplitude at ~30 km
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3 = [ Trench-basin transition
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[Skarbek & Saffer, 2009] Path length
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A weak and overpressured offshore megathrust

Tobin & Saffer, 2009

out-of-sequence
thrust

nner wedge ¥/

normally pressured

incoming sediments

-

décollement -
overpressured, weak, aseismic

drained and_—= lower p\ISTequs!
seismically locked

drainage, strengthening

poorly drained, mechanically weak % 3 clay:ehydration source
nearly constant effective stress B8

location of large magnitude earthquakes
and ruptur? patch

_
seismic -86° -85° -84°

Highly elevated pore pressure (>70% of lithostatic) & low stress are common in the
outer forearc. Modulated by dynamic balance between rates of loading & diffusion.
Poor drainage persists to 10" s of km from trench - Maria’s talk tomorrow

Quantifiable mechanism to explain weak subduction megathrusts. Potential
relationship to shallow SSE and aseismic slip; down-dip transition to frictional instability.

Yet, could promote rupture propagation to the trench.




