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Frictional-viscous control of stress profile  
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frictional-viscous transition
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Depth-independent 𝜆𝜆 is assumed
in thermal models and geodynamic models

Depth-dependent 𝝀𝝀 is assumed in earthquake cycle 
simulations

Direct measurement of effective stress is only 
possible in upper few km
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Slow earthquakes as evidence for near-lithostatic fluid pressure
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Tidal sensitivity of tremor

Ide & Tanaka, 2014

Short recurrence interval compared with regular 
earthquakes

Rogers & Dragert, 2003



Is Episodic Tremor and Slip (ETS) mixed frictional-viscous behavior?

4
Kirkpatrick et al. (2021)

Frictional mechanism is consistent with
• Radiation of seismic waves from tremor
• Periodic occurrence of slow slip

Viscous mechanism is consistent with
• Diffusive migration of slow slip

To activate both mechanisms, both strengths 
must be comparable



Goal of this work
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• We calculate the partition of friction and viscous deformation by quantifying the fluid pressure by 
dehydration fluid production

• We apply this modeling framework into Cascadia and discuss the parameter by comparing the result with 
megathrust earthquakes and ETS
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Partitioning of deformation

𝑥𝑥

𝑆𝑆(𝑥𝑥)

Impermeable 
overriding plate

Trench

𝐻𝐻
𝑤𝑤𝑓𝑓 𝑤𝑤𝑣𝑣

Fluid produced 
by dehydration

• Friction law (rate and state)

𝜏𝜏 = 𝑓𝑓0 + 𝑎𝑎 ln 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑉𝑉0

(𝜎𝜎 − 𝑝𝑝)

• Viscous flow law

Friction coefficient = 0.5

Velocity dependence 0.01

𝜏𝜏 =
𝜂𝜂𝑠𝑠𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑤𝑤𝑣𝑣

𝑉𝑉𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 + 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑉𝑉𝑠𝑠𝑓𝑓

𝜂𝜂𝑠𝑠 = 𝐴𝐴exp
𝑄𝑄
𝑅𝑅𝑅𝑅

Similar to pressure solution creep by 
Fisher and Hirth (2024)



Where do fluids come from?

7Condit et al. (2020)

Perple_X
Input: PT path and chemical composition 
(Mid-Ocean Ridge Basalt)
Output: Mineral bounded water in 
subducting oceanic crust as a function of 
depth

𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑉𝑉𝑠𝑠𝑓𝑓
d𝜒𝜒(𝑃𝑃,𝑅𝑅; 𝑥𝑥)

𝑑𝑑𝑥𝑥

Mineral-bounded water (%)

Thickness of dehydrating layer (2km) Plate velocity

Fluid production rate



Fluid flow along the megathrust
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fluid viscosity

Permeability 
(variable)

𝑞𝑞(𝑥𝑥) =
𝑘𝑘
𝜂𝜂𝑓𝑓

𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥 − 𝜌𝜌𝑓𝑓𝑔𝑔sin𝜃𝜃

Darcy law: Fluid flux depends on overpressure gradient

𝑞𝑞 𝑥𝑥 = �
𝑥𝑥
𝑑𝑑𝑥𝑥 𝑠𝑠(𝑥𝑥)/𝑤𝑤𝑓𝑓

𝑥𝑥

𝑆𝑆(𝑥𝑥)

Impermeable 
overriding plate

Trench

𝐻𝐻
𝑤𝑤𝑓𝑓 𝑤𝑤𝑣𝑣

Fluid produced 
by dehydration

Fluid mass balance

fluid density

dipFlux

Source Channel width



Permeability is not constant
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𝑑𝑑𝑘𝑘∗

𝑑𝑑𝑑𝑑
= −

1
𝑑𝑑ℎ

(𝑘𝑘∗ − 𝑘𝑘𝑚𝑚𝑠𝑠𝑚𝑚) −
𝑉𝑉𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠
𝐿𝐿 𝑘𝑘∗ − 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥

Slip induced increasesSealing/healing

𝑘𝑘 = 𝑘𝑘∗ exp −
𝜎𝜎 − 𝑝𝑝
𝜎𝜎0

David et al. 1994

Pressure dependence

Slip and time dependence

Steady state permeability: 𝑘𝑘 =
𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 exp −𝜎𝜎−𝑠𝑠𝜎𝜎0

1+ 𝐿𝐿
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡ℎ

Zhu et al. 2020



Application to Cascadia subduction zone
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● Warm subduction zone
● Large earthquake (M9) recurrence : 

~200-500 years
● Seismically quiet (uniformly locked until 15 

- 20 km depth)
● Episodic Tremor and Slip (ETS) event at 35 

– 45 km depths
● Shear stress in the seismogenic zone is 

estimated to be 20-30 MPa from stress 
rotation, topography, and heat flow (Li et 
al. 2018; Lamb 2006; Gao and Wang, 2014)

● Punctuated dehydration of subducting 
crust are 20 km, 35 km, and 50~ km

Dehydration 

Seismog
enic ETS

Hyndman et al. 2015



Overview of the results
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Overview of the results
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• Shallow (<5 km)
Frictional slip only
Effective stress increases with depth



Overview of the results

13

• Shallow (<5 km)
Frictional slip only
Effective stress increases with depth

• Intermediate (5 km - 30 km)
Friction slip dominant with nonzero viscous flow
Uniform effective stress and shear stress



Overview of the results
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• Shallow (<5 km)
Frictional slip only
Effective stress increases with depth

• Intermediate (5 km - 30 km)
Friction slip dominant with nonzero viscous flow
Uniform effective stress and shear stress

• Deep (>30 km)
Viscous flow dominant with nonzero frictional slip
Effective stress decreases with depth
Frictional and viscous strengths are comparable



Effective stress decreases with depth below the frictional-viscous transition
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𝜎𝜎′~
𝜂𝜂𝑠𝑠𝑉𝑉𝑠𝑠𝑓𝑓
𝑓𝑓𝑤𝑤𝑣𝑣

Li & Liu, 2016

Frictional earthquake cycle models for 
slow slip assume even more rapid drop of 
effective stress at ETS regions

Decrease due to healing 

𝜎𝜎′~𝜎𝜎0 ln
𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥𝑤𝑤𝑓𝑓Δ𝜌𝜌𝑔𝑔sin𝜃𝜃

𝜂𝜂𝑓𝑓𝜒𝜒𝐻𝐻𝑉𝑉𝑠𝑠𝑓𝑓

Nearly uniform effective stress



Frictional viscous transition is gradual and monotonic
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1700 rupture and 
current locking

ETS

Partial creep

Viscous flow sets in at 15 km depth, but the 
transition complete around at 60 km depth. 
ETS corresponds to a region where 20-30% of 
deformation is viscous

Gao & Wang (2017) argued that the 
transition is not monotonic. The gap between 
the seismogenic zone and ETS zone is more 
viscous

Can we reproduce non-monotonic transition 
in our framework?

Stable creep



Permeability contrast from lithology
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Katayama et al. 2012

Locked ETS

Moho
Low kmax

Serpentinite is more permeable 
than gabbro for a given 
effective stress

Gabbro above the serpentinized
mantle wedge corner



Draining from upper plate
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Hyndman et al. (2015)

High fluid pressure by impermeable overriding plate 
by serpentinization

Moho

Locked ETS

Similar idea by Gao and Wang (2017)



Summary

• The stress profile and partition of deformation along the Cascadia megathrust is calculated using 
fluid production from dehydration reactions of oceanic crust.

• The effective stress in the seismogenic zone is almost uniform value and a function of fluid 
production and transport properties

• The effective stress and hence frictional strength decrease with depth below the seismogenic
zone.

• Fluid loss at the mantle wedge corner or locally low permeability produce non-monotonic 
frictional viscous transition, potentially explaining the gap in Cascadia
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See also Wenqiang Zhang’s poster for seismic cycle simulations using the stress profile calculated in this work



Earthquake cycle simulation in the Cascadia subduction zone
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Zhang, Ozawa, Dunham (Poster)






Relaxing the assumption of impermeable overriding plate
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𝑥𝑥

permeable 
overriding plate

Trench

𝐻𝐻

Fluid pressure, porosity  seismic velocity, resistivity, geochemical signature

• Fluids want to move vertical owing to 
buoyancy

• There still exists updip flow due to the 
high permeability

• Broad low effective stress region above 
the fluid source

Plate interface is 10 x more permeable than surrounding rock



Colder

Exact

Warmer



L = 0.1 mm L = 1 mm

L = 10 mm L = 100 mm



L = 0.1 mm L = 1 mm

L = 10 mm L = 100 mm



If permeability enhancement is caused by V instead of Vslip



a=0.05

a=0
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