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Long-studied problem

• Evolving system where material 

is entering the thrust zone

Karig 1990

• Generation and dissipation of 

overpressures

Karig 1990; Karig & Lundberg 1990 
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Nikolinakou et al, 2023

Evolution of stress state

Komatsu D65PX-15 (youtube)

• Hanging wall: change in loading from vertical burial to lateral compression 

  e.g., Hubbert & Rubey (1959), Davis et al (1983), Karig (1986)
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Long-standing question

How does the change in mechanical loading and stress state affect 

porosity, overpressures, and décollement strength?
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Very limited data from direct measurements

Barbados – Becker et al; 1997

949
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Long-standing question studied using a) seismic/geophysical data 

• Low velocity zones interpreted to 

reflect high pore pressure in 

basal sediments below the 

décollement

Han et al., 2017
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Long-standing question studied using b) field measurements

(Shipboard Scientific Party, 1991)

Decollement

Basement

(Nankai; Moore et al., 2001)

808
1173

Porosity Porosity

Site 808 Site 1173

• Accretionary prism sediments are more 

compacted despite the presence of 

overpressures

• Contrast in physical properties between 

hanging wall and footwall sediments
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Long-standing question studied using c) numerical models

Saffer & Bekins, 2006

Rowe et al (2012)

• Decades of numerical simulations addressing large deformations, change in stress state, porous 

fluid flow
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Our geomechanical study

• Realistic sediment rheology that captures the poro-plastic behavior of marine sediments

• Contribution of both mean and shear stress to compaction and overpressure generation

• Large-strain evolutionary geomechanical models

• Fully coupled (transient) deformation and porous fluid flow

Nikolinakou, Flemings, Gao, Saffer; 

JGR 2023
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• Finite element model (Rockfield 

Elfen)

• 2D plane strain

• Transient analyses: couple 

loading, drainage, and sediment 

compression

• Poro-elastoplastic material 

(Critical state; SR3)

Evolutionary geomechanical model
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• Transient analysis couples tectonic loading, drainage, and 

sediment compression

Evolutionary geomechanical model

0

60
Overpressure

𝑢𝑒 = 𝑢 − 𝑢ℎ (MPa)

v.e. x 2

30
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Strain evolution

Morgan et al (1994)

• Geomechanical results mechanically 

quantify strain evolution observed in the 

field

• Models now simulate observations at 

fabric scale
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Overpressure

• Rapid increase of overpressure at trench

• Overpressure develops seaward of trench, despite constant overburden (flat sea floor)

• Near trench, pressure at hanging wall is much higher than in footwall

Overpressure

(excess pressure)

𝑢𝑒 = 𝑢 − 𝑢ℎ
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Overpressure ratio at trench

• Overpressure onsets ahead of 

the trench

• Overpressure increases faster 

than overburden at trench area

l* =
u-uh

s v -uh
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Mean stress increase in hanging wall

abc

ac

3

1 3

1

abc

Lateral tectonic loading increases mean stress in hanging wall

Significant mean-stress increase in the trench area
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Mean-stress induced overpressures

abc

• Increase in mean stress leads to an increase in overpressure as sediment enters the wedge

• Overpressure increase ahead of the trench
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Differential stress in hanging wall

abc

• Deviatoric stress increases faster than the mean effective stress

• Coulomb failure inside wedge

abc
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Undrained pore pressure response to mean stress increase

Total mean stress generates overpressure
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Triaxial frame; 40-100 MPa

Tufts University

Experimental measurement on offshore mudrocksExperimental measurement on offshore mudrocks

Effective stress decreases ➔ weaker material 

Overpressure supports part of the load

Mudrocks can generate significant overpressure under differential loading
Flemings (2021)



20Fluids in Cascadia Workshop - April 24, 2025

Undrained pore pressure response to mean and deviatoric stress increase

Both mean and deviatoric loading generate overpressure

Effective stress decreases ➔ weaker material, pore pressure supports part of the load
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Shear-stress-induced overpressures

• Increase in differential stress generates 

significant overpressures

• Rapid increase of shear-induced pressures at the 

trench area, where relative shear increases

• Overpressure increases faster than overburden 

at trench area → decrease in effective stress
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Components of overpressure generation

• Pore-pressure coefficients 
ξm

𝑆
, 

ξq

𝑆
 depend on constitutive model. They are function of: 

 a) material parameters (friction angle and compressibility); 

 b) the pre-loading state (porosity, shear-stress ratio). 

• Using conservation of fluid mass, Darcy’s law, and poro-elastoplasticity: 

Pressure 

dissipation 

Mean-

induced
Shear-

induced
Pressure

𝐷𝑢

𝐷𝑡
=

ξm

𝑆

Dσm

Dt
+

ξq

𝑆

𝐷𝑞

𝐷𝑡
+

1

𝑆𝜌𝑓
∇ ∙

ρf𝑘

𝜇
∇ ∙ 𝑢𝑒

Nikolinakou, Flemings, 

Gao, Saffer; JGR 2023
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Summary: change in stress state and overpressures

• Evolution in stress state results in overpressures that onset seaward of the trench and increase 

rapidly in the trench area
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Implications: overpressure dissipation

• Dissipation throughout the subduction path but 

focused at the trench 
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Implications: compression

(Shipboard Scientific Party, 1991)

Observed porosity 

at Nankai

Site 808

• Hanging-wall sediments are more compressed than footwall ones despite overpressure because 

of tectonic loading and dissipation 
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Implications for décollement strength

𝜎H

𝜏 = 𝜇𝜎𝑣
′  = 𝜇(𝜎v−u)

𝜎v

u

• Vertical effective stress lower than 

initial value seaward of trench

• 33 % decrease in décollement strength

• Weakened décollement for several km 

into the subduction zone, despite 

increase in overburden thickness
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Broader Implications for slip behavior

In the outer several tens of km 

of the subduction zone:

• Effective stress remains low

• Compaction increases the 

sediment elastic moduli

→ Stable slip 

𝐾 > 𝐾𝑐 = 𝜎′𝑛

𝑏 − 𝑎

𝐷𝑐

Stable slip:
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Broader Implications for earthquake behavior

High overpressures, low megathrust strength are 

established outboard of trench and extend for 

tens of km downdip:

• development of protothrust zones seaward of 

trench

• creep, shallow slow earthquakes

• propagation of large shallow coseismic slip
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Carbotte et al (2024)

How do stresses change when faults develop?
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Evolutionary geomechanical models with spontaneous fault generation

Doctoral research of Graciela Lopez-Campos

𝜇𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑠 = 0.44
𝜇𝑓𝑎𝑢𝑙𝑡 = 0.25 

𝜇𝑑𝑒𝑐𝑜𝑙𝑙𝑒𝑚𝑒𝑛𝑡 = 0.2
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Differential stress in faulted upper plate

Time 6.96 Ma

• Fault generation decreases the differential stress of the intact sediment

• Stress heterogeneity in the upper plate

• Persistent presence of high differential stresses near the toe → potentially higher overpressures 

at the leading edge of the wedge

d

F10

F10

F11
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Key points

• Both mean and shear stress contribute to pressure 

generation; shear-induced overpressures are 

significant at and outboard of the trench

• Overpressure increases faster than overburden at 

the trench area

• High overpressures result in a weakened 

décollement that onsets ahead of the trench and 

persists tens of km into the subduction zone 

• Fluid expulsion is highest at the trench
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Incorporation of critical state soil mechanics

• Framework interrelates mean (average) stress, 

differential stress, and porosity

• All three evolve as sediment enters the wedge

• Stress state in footwall remains ~ uniaxial

ac

mp
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Incorporation of critical state soil mechanics

• Mean stress, differential stress, and porosity are 

interrelated

• Changes in both mean and differential stress can 

cause compaction, or, in the case of limited 

drainage, excess pore pressure (overpressure)

ac

Flemings (2021);

Cambridge Press
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Importance of pre-loading stress state for pressure generation

• The mean-stress pressure coefficient is relatively 

insensitive to the initial, pre-loading stress state

• Mean-induced pressures are ~ equal to change in 

mean stress:

D𝑢𝑒
𝑚 ≈  Dσm

Pressure 

dissipation 

Mean-

induced
Shear-

induced
Pressure

𝐷𝑢

𝐷𝑡
=

ξm

𝑆

Dσm

Dt
+

ξq

𝑆
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+

1

𝑆𝜌𝑓
∇ ∙

ρf𝑘

𝜇
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Importance of pre-loading stress state for pressure generation

• Shear-stress pressure coefficient is very 

sensitive to the amount of shear in the initial 

stress state

• Can increase by a factor of 20 between 

uniaxial and critical initial states 

D𝑢𝑒
𝑞

>> D𝑞

Pressure 

dissipation 

Mean-

induced
Shear-

induced
Pressure

𝐷𝑢

𝐷𝑡
=

ξm

𝑆

Dσm

Dt
+

ξq

𝑆

𝐷𝑞

𝐷𝑡
+

1

𝑆𝜌𝑓
∇ ∙

ρf𝑘

𝜇
∇ ∙ 𝑢𝑒
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Importance of stress path for pressure generation

• The shear-stress pressure coefficient increases 

after each loading increment

• Importance of shear-induced pressures in 

tectonic environments undergoing change in 

stress state (thrust belts, salt)

• Poro-elastic approach cannot capture these 

pressures

Pressure 

dissipation 

Mean-

induced
Shear-

induced
Pressure

𝐷𝑢

𝐷𝑡
=

ξm

𝑆

Dσm
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+
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Importance of pre-loading stress state for pressure generation

• Shear-induced pressures are significant at the 

trench where the stress state evolves.
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Overpressure and stress profiles at trench

• Focused dewatering at trench 

• Increase in horizontal effective stress and differential stress

• Porosity loss
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Porous fluids and overpressure

F
le

m
in

g
s 

2
0
2
1

• External compression load tends to decrease volume

• Overpressures develop if pore fluid cannot flow out of compressed volume

• Overpressure dissipation depends on permeability and compressibility of mud rocks
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Overpressure and compaction

• Total stress = effective stress + pore pressure

• Overpressure decreases the effective stress and inhibits compaction

• Sources of overpressure: rapid deposition, tectonic or geologic loading 
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Critical wedge

Inside the wedge the stress state is at passive 

(Coulomb) failure:

ητ =
𝑞

𝜎𝑚
′ =

)3(1 − Kτ

1 + 2Kτ

Kτ =
𝜎3,τ

′

𝜎1,τ
′ =

1 − 𝑠𝑖𝑛𝜙′

1 + 𝑠𝑖𝑛𝜙′

Differential stress is a function of mean 

effective stress
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Impact of sediment permeability to overpressure generation
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Decreasing mudrock permeability amplifies and expands the weakened décollement region 

Impact of permeability on décollement strength 
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