The seismic consequences of being a leaky fault **Gaspard Farge**

University of California Santa Cruz

In collaboration with: **Emily Brodsky** – UC Santa Cruz **Nikolai Shapiro** – ISTerre (Grenoble) **Claude Jaupart** – IPGP (Paris)

Tremor indicates a fast stress release process on (near) the plate interface

Tremor activity is "synchronized"

Segmentation of tectonic tremor in the Cascadia subduction zone

Adapted from Wech et al. (2021, 2008 etc)

Cumulative Magnitude

- *i.e.* Large portions of the fault activate at the same time
- ➡ Characteristic sizes
- ➡ Periodicity

Quasi-periodic activity, longperiod (~14 mo) recurrence. Intermediate scale synchronization.

Quasi-periodic activity, longperiod (19 mo) recurrence Large-scale synchronization

Temporally clustered activity, ~9 mo recurrence scale Shorter-scale synchronization

Tremor is generated as the fault slips slowly, in a high fluid pressure environment

A fault-valve mechanism

Hydraulic and solid stresses load the fault simultaneously

 $*F_0$: Residual fault strength after failure $(F_0 = \mu \sigma_n \text{ for full stress drop})$

A fault-valve mechanism

Hydraulic and solid stresses load the fault simultaneously

Stress loading:
$$L(t) = \mu p(t) + \tau(t)$$

The dynamics of stress accumulation has fundamental consequences on the seismic cycle

Stresses leak out of the fault

Hydraulic stresses leak out of the fault due to **(low)** permeability seals

Hydraulic stress loading:

Stresses leak out of the fault

Hydraulic and *solid* stresses both leak out of the fault producing a concave loading curve in time

- Leakage competes with steady loading in shaping the recurrence
- The curvature makes the stress sit near failure for a long share of the cycle

The seismic consequences of being a leaky fault

1. Sources and sinks control recurrence 2. Tremor synchronization **3. Sensitivity to transients**

Segmentation of ETS recurrence along-strike

Adapted from Wech et al. (2021, 2008 etc)

10

Segmentation of ETS recurrence along-strike

-126.2°

-123.6°

Loading for increasing source term

Segmentation of ETS recurrence along-strike

Higher sink conductivity K produces longer Adapted from Wech et al. (2021, 2008 etc) Cumulative Magnitude loading, thus longer recurrence times Total M_{eL} - 2.5 Longitude - 2.0 - 1.5 2021 2019 2020 150 km

-126.2°

-123.6°

40°

42°

44°

46°

48°

50° N

The seismic consequences of being a leaky fault

1. Sources and sinks control recurrence 2. Tremor synchronization 3. Sensitivity to transients

Segmentation of ETS "synchronization" along-strike

i.e. Large portions of the fault activate at the same time

-126.2°

Characteristic sizes ➡ Periodicity

- Synchronization through constructive stress interactions: failure brings neighbors closer to fail
- Synchronization in time/space translates into regularity of recurrence

- Synchronization through constructive stress interactions: failure brings neighbors closer to fail
- Synchronization in time/space translates into regularity of recurrence

- Synchronization through constructive stress interactions: failure brings neighbors closer to fail
- Synchronization in time/space translates into regularity of recurrence

- Synchronization through constructive stress interactions: failure brings neighbors closer to fail
- Synchronization in time/space translates into regularity of recurrence

- Synchronization through constructive stress interactions: failure brings neighbors closer to fail
- Synchronization in time/space translates into regularity of recurrence

Modeling interactions in a purely hydraulically loaded fault

Modeling results from Farge et al. (2021, 2023)

A 1D permeable channel, saturated with fluid

The proximity to rupture controls sensitivity to interactions

The source **source flux** Q shapes the cycle of a fault element:

- How close to threshold it is on average
- How **sensitive** to neighboring activity

The proximity to rupture controls sensitivity to interactions

The source $\operatorname{source} \operatorname{flux} Q$ shapes the cycle of a fault element:

- How close to threshold it is on average
- How sensitive to neighboring activity

High Q: short-range synchronization

Segmentation of ETS synchronization along-strike

Adapted from Wech et al. (2021, 2008 etc)

Cumulative Magnitude

-126.2°

-123.6°

Lower source flux Q / higher sink conductivity K produces more efficient interactions, thus more synchronized activity

The seismic consequences of being a leaky fault

1. Sources and sinks control recurrence 2. Tremor synchronization 3. Sensitivity to transients Regular earthquake 🗸 ← LFE Tremor Triggers?

30 minutes

Earthquakes trigger tremor

Small Earthquakes trigger tremor Earthquake Background rate LFEs "Expected" Nankai 14 Obs. / Exp. counts 12 5-95% CI Δx

 Large earthquakes known to trigger tremor globally and regionally

LFEs in ΔT , Δx

"Observed"

• Smaller earthquakes trigger tremor locally

Tremor is extremely* sensitive to dynamic stress

Tremor is extremely* sensitive to dynamic stress

Time

*The same dynamic stress produces ~ x100 more triggering of LFEs than EQ

Tremor (NIED, Maeda et al, 2009, Obara et al, 2010)

Tremor (NIED, Maeda et al, 2009, Obara et al, 2010) -----

Tremor (NIED, Maeda et al, 2009, Obara et al, 2010) والمجارقة فتحا

In 7 tremor zones across the world

1. Measure tremor correlation length

2. Measure number of earthquakes "felt" by tremor

Alaska

- Wech (2016) tremor
- ComCat earthquakes
- 3 years, 350 km

Japan Trench

- Nishikawa et al (2023) tremor
- JMA earthquakes
- 6.5 years, 1000 km

Nankai

- NIED tremor
- JMA earthquakes
- 21 years, 700 km

Cascadia

- PNSN tremor
- ComCat earthquakes
- 15 years, 1,200 km

Taiwan

- Ide & Chen (2024) tremor
- CWASN earthquakes
- 11 years, 350 km

Hikurangi

- Todd & Schwartz (2016) tremor
- GeoNet earthquakes
- 7 years, 160 km

Parkfield

- Shelly (2017) LFEs
- Waldhauser & Schaff (2008) earthquakes
- 17 years, 160 km

Small earthquake activity anti-correlates with tremor synchronization

Across regions and along strike

Small Earthquakes Disrupt Tectonic Tremor Synchronization

Local earthquakes disturb the synchronization process and inhibit the emergence of large ruptures

Small earthquakes disrupt tectonic tremor synchronization

Can be $\frac{\mathrm{d}\sigma}{\mathrm{d}t} = V - \alpha\sigma$ modeled!

From Farge & Brodsky (2025) – The big impact of small quakes on tremor synchronization (Sci. Adv.)

Conclusion The extraordinary synchronization and sensitivity of tremor and slow slip could emerge from stress leakage

Adapted from Wech et al. (2021, 2008 etc)

