
Liquefaction Hazard Assessments
• Governing variables in the PacNW: 

–  Duration
–  Mainshock – Aftershock (will not address herein)

• Probabilistic models with emphasis on effects of duration 
and multi-shock sequences must be developed/improved

• Probabilistic or deterministic, liquefaction hazard                     
assessments (LHAs) consist of: 
–Step 1: Susceptibility to liquefaction (or cyclic softening)
–Step 2: Liquefaction triggering (or cyclic softening failure)
–Step 3: Consequences

Susceptibility to liquefaction (or cyclic softening)

Armin.Stuedlein@oregonstate.edu



• We can quantify certain hysteretic metrics                                                                         
for an objective assessment of behavior:
– Angle of γ-τcyc hysteresis prior to                                                                                                          

& following unloading
– Cyclic shear stress difference Δτcyc                                                                                                                             

at shear strain, γ = 0
– Minimum tangent shear                                                                                                        

modulus, Gtan,min

– Maximum excess pore pressure                                                                                           
generated, ru,max

• Can assess differences between key numbers of loading cycles, Nγ = 3%                    
and Nmax (γmax > 5%): duration  N, assess role of duration on evolution of 
hysteretic behavior  important for transitional soils

Shear Strain, γ (%)
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Non-plastic Silty Sand (Site F, Boone Bridge)

Normalized by τcyc,max :
 - ∆τcyc /τcyc,max
  - Gtan,min /τcyc,max

Linking Hysteretic Behavior to 
Liquefaction Susceptibility
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Example behaviors @ Nγ = 3% and Nmax

Linking Hysteretic Behavior to Liquefaction 
Susceptibility

Shear Strain, γ (%)
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Specimen Behavior ru,max 
(%) Gtan,min/τcyc,max ∆τcyc/τcyc,max 

Nγ=3% Nmax Nγ=3% Nmax Nγ=3% Nmax Nγ=3% Nmax 
F-2-6 Interm. Sand 93 99 10.12 0.00 0.60 0.47 
E-3-2 Clay Clay 8 79 20.41 1.26 0.76 1.00 

A-BL-3 Clay Sand 79 100 12.01 0.04 0.85 0.71 
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(c)

F-2-6, PI = 0, OCR = 2.4
ru,max = 99%
Nγ = 3%: Intermediate Behavior
Nmax:   Sand-Like Behavior
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E-3-2, PI = 27, OCR = 2.1
ru,max = 79%

(d)

  

  
 

   
   

 
 

    
    
    

  

   
  

   
   

   
   

Nγ = 3%: Clay-Like Behavior
Nmax:   Clay-Like Behavior
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A-BL-3, PI = 11, OCR = 4.2
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Nγ = 3%: Clay-Like Behavior
Nmax:   Sand-Like Behavior

    
    

We must adequately quantify N for 
subduction zone motions, given role of 
duration to produce damage-inducing 
evolution of stress-strain responses.
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Number of Cycles, N

       

       

       

 

   

Equivalent No. of Cycles, Neq

• Three suites of cyclic test data on silts; role of:
– Duration / N
– Plasticity Index (PI; indicator                  

of clay mineral activity)

on cyclic resistance
• Exponent b in 𝑪𝑪𝑪𝑪𝑪𝑪 = 𝒂𝒂 � 𝑵𝑵−𝒃𝒃 

controls the number of                                                                                
equivalent uniform loading                  
cycles, Neq, associated w/                                              
a given GM

• Preliminary assessment of                                                              
NGA-Sub GMs instructive4



Equivalent No. of Cycles, Neq

• 𝑪𝑪𝑪𝑪𝑪𝑪 = 𝒂𝒂 � 𝑵𝑵−𝒃𝒃, with:
– Medium to high plasticity silts and clays,                          

b = 0.06 (top plot)
– Non-plastic silts, b = 0.14 (middle plot)
– Dense sands, b = 0.34 (bottom plot)

• Sensitivity of Neq to Mw increases with b
• Note the variability in Neq

• Use of mean Neq alone is questionable
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Equivalent No. of Cycles, Neq
• For typical b = 0.1 (low PI silts),                    

mean Neq of:
– Mw = 6.5: Neq ≈ 75
– Mw = 7.5: Neq ≈ 80
– Mw = 9.1: Neq ≈ 100 

• Large Neq; thus, establishing ultimate 
hysteretic behavior important, critical for 
liquefaction susceptibility determinations

• We must develop probabilistic Neq models;             
in motion through CRESCENT Seed Grant
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Probabilistic Liquefaction Hazard Assessments:           
Next Generation Liquefaction (NGL) Project

7

     
   

  
 

1

  

  

http://nextgenerationliquefaction.org

• Approach: allows rational consideration of:

• Current functional form:

No Manifestation ≠ No Triggering  P[NT|NM] < 1.0 P[T|NM] > 0.0

Manifestation ≠ Triggering    P[T|M] < 1.0  P[NT|M] > 0.0

ru = 100%

Triggering
No manifestation

ru = 90%

Manifestation
No triggering

( )
[ | ] [ ] [ | ] [ ][ | ]

[ ] [ | ] [ ] [ | ] 1 [ ]
P M T P T P M T P TP T M

P M P M T P T P M NT P T
= =

+ −

Need three probabilities:

•Probability of manifestation given triggering, P[M|T]

•Probability of manifestation without triggering, P[M|NT]

•Probability of triggering before incorporation of case history data, P[T]  -  prior probability

Probabilistic manifestation model; informed  
by case histories in the NGL Database



Probabilistic Liquefaction Hazard Assessments
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• Previously, the laboratory-based “prior” assumed P [ S ] = 1.0
• Characterize probability of liquefaction susceptibility, P [ S ]: 

• SPT-based triggering: PI
• CPT-based triggering: PI and CPT Ic

• Evaluate sensitivity P [ S ] models to soils with differing                 
fines contents, and fines of differing plasticity

• Functional form of model:

Susceptibility defined using 
hysteretic behavior

𝑃𝑃 𝑇𝑇|𝑀𝑀, 𝑆𝑆 =
𝑃𝑃 𝑀𝑀|𝑇𝑇 � 𝑃𝑃 𝑇𝑇|𝑆𝑆 � 𝑃𝑃 𝑆𝑆

𝑃𝑃 𝑀𝑀|𝑇𝑇 � 𝑃𝑃 𝑇𝑇|𝑆𝑆 � 𝑃𝑃 𝑆𝑆 + 𝑃𝑃 𝑀𝑀|𝑁𝑁𝑁𝑁 � 1 − 𝑃𝑃 𝑇𝑇|𝑆𝑆 𝑃𝑃 𝑆𝑆
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Probabilistic Liquefaction Hazard Assessments

• Envisioned pathway for                                                            
PLHA: Logic tree

• Probabilistic                 
susceptibility model               
provides weights

• Cyclic resistance               
models weighted                    
based on fines                    
contents, plasticity

• Then on to consequence      
evaluation

Consequences

Need better 
models, 

probabilistic 
models, to 
adequately 

capture 
displacemen

ts, slope 
failures, etc.



Liquefaction Hazard Assessments
• Governing variables in the PacNW: 

–  Duration
–  Mainshock – Aftershock

• Probabilistic liquefaction hazard assessments (PLHAs) 
require new models for Step 3: Consequences
– Flow failure
– Lateral spreading
– Settlement

Armin.Stuedlein@oregonstate.edu



– Thank you – 
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