Armin.Stuedlein@oregonstate.edu

- Liquefaction Hazard Assessments
- Governing variables in the PacNW:
 - Duration
 - Mainshock Aftershock (will not address herein)
- Probabilistic models with emphasis on effects of duration and multi-shock sequences must be developed/improved
- Probabilistic or deterministic, liquefaction hazard assessments (LHAs) consist of:
 - -Step 1: Susceptibility to liquefaction (or cyclic softening)
 - -Step 2: Liquefaction triggering (or cyclic softening failure)
 - -Step 3: Consequences

Linking Hysteretic Behavior to Liquefaction Susceptibility

- We can quantify certain hysteretic metrics for an objective assessment of behavior:
 - Angle of γ - τ_{cyc} hysteresis prior to & following unloading
 - Cyclic shear stress difference $\Delta \tau_{cyc}$ at shear strain, $\gamma = 0$
 - Minimum tangent shear modulus, *G*_{tan,min}
 - Maximum excess pore pressure generated, r_{u,max}

Linking Hysteretic Behavior to Susceptibility

We must adequately quantify N for subduction zone motions, given role of duration to produce damage-inducing evolution of stress-strain responses.

A-BL-3, PI = 11, OCR = 4.2

N_{y=3%}: Clay-Like Behavior

N_{max}: Sand-Like Behavior

r_{u,max} = 100%

-10

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-15

/t_{cyc,max}

r_{cyc}/

Normalized Cyclic Shear Stress,

Equivalent No. of Cycles, N_{eq}

- Three suites of cyclic test data on silts; role of:
 - Duration / N
 - Plasticity Index (*PI*; indicator of clay mineral activity)
 - on cyclic resistance
- Exponent *b* in $CRR = a \cdot N^{-b}$ controls the number of equivalent uniform loading cycles, N_{eq} , associated w/ a given GM
- Preliminary assessment of
 NGA-Sub GMs instructive

Equivalent No. of Cycles, N_{eq}

- $CRR = a \cdot N^{-b}$, with:
 - Medium to high plasticity silts and clays,
 b = 0.06 (top plot)
 - Non-plastic silts, b = 0.14 (middle plot)
 - Dense sands, b = 0.34 (bottom plot)
- Sensitivity of N_{eq} to M_w increases with b
- Note the *variability* in N_{eq}
- Use of mean N_{eq} alone is questionable

Equivalent No. of Cycles, N_{eq}

• For typical b = 0.1 (low *PI* silts), mean N_{eq} of:

$$-M_{w} = 6.5: N_{eq} \approx 75$$

$$-M_{w} = 7.5: N_{eq} \approx 80$$

$$-M_{w} = 9.1: N_{eq} \approx 100$$
Range in N_{eq}:
30 to 300

- Large N_{eq}; thus, establishing *ultimate* hysteretic behavior important, critical for liquefaction susceptibility determinations
- We must develop probabilistic N_{eq} models; in motion through CRESCENT Seed Grant

Probabilistic Liquefaction Hazard Assessments: Next Generation Liquefaction (NGL) Project

P[NT|NM] < 1.0

P[T|M] < 1.0

• Approach: allows rational consideration of:

No Manifestation \neq No Triggering Manifestation \neq Triggering

Current functional form:

 $P[T \mid M] = \frac{P[M \mid T]P[T]}{P[M]}$ T P[T] + P[M | NT] (1 - P[T])

Need three probabilities:

- Probability of manifestation given triggering, P[M|T]
- Probabilistic manifestation model; informed by case histories in the NGL Database • Probability of manifestation without triggering, P[M|NT]
- Probability of triggering before incorporation of case history data, P[T] prior probability

P[T|NM] > 0.0

P[NT|M] > 0.0

Probabilistic Liquefaction Hazard Assessments

© FHWA

- Previously, the laboratory-based "prior" assumed P[S] = 1.0
- Characterize probability of liquefaction susceptibility, P[S]:
 - Susceptibility defined using hysteretic behavior SPT-based triggering: *PI* CPT-based triggering: *PI* and CPT *I_c*
- Evaluate sensitivity *P*[*S*] models to soils with differing fines contents, and fines of differing plasticity
- Functional form of model:

$$P[T|M,S] = \frac{P[M|T] \cdot P[T|S] \cdot P[S]}{P[M|T] \cdot P[T|S] \cdot P[S] + P[M|NT] \cdot ((1 - P[T|S]P[S]))}$$

Probabilistic Liquefaction Hazard Assessments

@ FHWA

- Envisioned pathway for PLHA: Logic tree
- Probabilistic susceptibility model provides weights
- Cyclic resistance models weighted based on fines contents, plasticity

NGL

LIQUEFACTION

Then on to consequence
 evaluation

- Governing variables in the PacNW:
 - Duration
 - Mainshock Aftershock
- Probabilistic liquefaction hazard assessments (PLHAs) require new models for Step 3: Consequences
 - Flow failure
 - Lateral spreading
 - Settlement

– Thank you –

Armin.Stuedlein@oregonstate.edu

References

- Slides 2, 3:
 - Stuedlein, A.W., Dadashiserej, A., Jana, A., Evans, T.M. (2023). "Liquefaction Susceptibility and Cyclic Response of Intact Nonplastic and Plastic Silts." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 149, No. 1, 04022125.
 - Stuedlein, A.W., Alemu, B., Evans, T.M., Kramer, S.L., Stewart, J.P., Ulmer, K., Ziotopoulou, K., (2023a), "PEER Workshop on Liquefaction Susceptibility," PEER Report 2023/02, Pacific Earthquake Engineering Research Center, Berkeley, California, DOI: 10.55461/BPSK6314.
 - Sahin, A., Jana, A., Beyzaei, C.Z., Sancio, R., Ulmer, K.J., Brandenberg, S.J., Kramer, S.L., Stewart, J.P. and Stuedlein, A.W., "Next Generation Liquefaction Laboratory Database for Susceptibility and Cyclic Strength Assessment." In Geotechnical Frontiers 2025, pp. 238-247..
- Slides 4 6: Dadashiserej, A., Jana, A., Stuedlein, A.W., Evans, T.M. (2024). "Cyclic Resistance Models for Transitional Silts with Application to Subduction Zone Earthquakes." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 150, No. 2, 04023135.
- Slides 7, 8: Ulmer, K.J., Hudson, K.S., Brandenberg, S.L., Zimmaro, P., Pretell, R., Carlton, B., Kramer, S.L., and Stewart, J.P., (2024), "Next Generation Liquefaction Models for Susceptibility, Triggering, and Manifestation," U.S. Nuclear Regulatory Commission.
- Slide 9: Sahin, A., Jana, A., Ulmer, K.J., Brandenberg, S.J., Evans, T.M., Kramer, S.L., Stewart, J.P. and Stuedlein, A.W., "Application of Liquefaction Susceptibility Criteria within a Logic Tree Framework." *Generative 2025*, In press

Armin.Stuedlein@oregonstate.edu