

Simon Fraser University Engineering Geology and Resource Geotechnics Research Group

INSIGHTS OF GROUND FAILURES FROM RECENT CHILEAN EARTHQUAKES

Sergio A. Sepúlveda Department of Earth Sciences, Simon Fraser University

Chile

- Recent examples, for different earthquake source mechanisms
- Convergent boundary
- Nazca plate subduction, about 7 cm/year, underneath South American Plate

Mw 6.2 Aysen Fjord earthquake 2007 (shallow crustal)

SFU 3

2010 Mw 8.8 Maule Earthquake (subduction)

Serey et al., Landslides, 2019

Serey et al. 2019, 2021

- The number, size, type and geographic distribution of landslides seem to largely depend on the earthquake source mechanism, with distinction between megathrust and shallow crustal earthquakes.
- Landslides triggered by moderately large (M 6.0-7.0), inland shallow crustal earthquakes tend to have <u>higher</u> <u>landslide density and larger volumes</u> than those induced by large magnitude (M 7.5-9.0+), megathrust earthquakes along the subduction plate boundary.
- These findings can be applied in other mountain ranges in subduction zones such as the Cascadia subduction zone.

Earthquake-induced landslides conceptual geomodels

Glacial environment, shallow crustal EQ

Abundant dikes and sills

Rocks andesitic to

dacitic rocks

Anticline

Continental sedimentary rocks

with tuffs, lavas and limestone

thrust

fault

And liquefaction?

After the 1985, M 8.0, central Chile earthquake, many believed liquefaction was not an issue ("too many earthquakes have densified the soil").

- However, the 2010, M 8.8 earthquake showed widespread liquefaction, up to 300 km from the epicenter:
 - (1) flat areas in where significant settlements were induced,
 - (2) tailing dams,
 - (3) lateral spreading,
 - (4) failure of pile foundations due to lateral spreading

Sepúlveda et al. (2022), Verdugo & Gonzalez (2015)

THANK YOU

Bibliography:

- Sepúlveda, S.A., Ochoa-Cornejo, F., Serey, A., 2022. Earthquake-induced landslides and ground failure in Chile: The Aysen 2007 and Maule 2010 earthquakes. In Towhata, G.Wang, Q. Xu, C. Massey (eds.), *Coseismic Landslides. Phenomena, Long-Term Effects and Mitigation*, Springer Nature Singapore, pp. 41-57.
- Sepúlveda, S.A., Serey, A., Lara, M., Pavez, A., Rebolledo, S., 2010. Landslides induced by the 2007 Aysen Fjord earthquake, Chilean Patagonia. *Landslides* 7, 483-492.
- Serey, A., Sepúlveda, S.A., Murphy, W., De Pascale, G., Petley, D.N., 2025. Revised comprehensive inventory of landslides induced by the 2007 Aysén earthquake, Patagonia. *Bulletin of Engineering Geology and the Environment*, 84:142, <u>https://doi.org/10.1007/s10064-024-04057-2</u>.
- Serey, A., Sepúlveda, S.A., 2024. Comprehensive earthquake-induced landslide inventory dataset of the 2010 Chile megathrust earthquake. *Data in Brief*, 57: 111078, <u>https://doi.org/10.1016/j.dib.2024.111078</u>.
- Serey, A., Sepúlveda, S.A., Murphy, W., Petley, D.N., De Pascale, G., 2020. Developing conceptual models for the recognition of coseismic landslides hazard for shallow crustal and megathrust earthquakes in different mountain environments—an example from the Chilean Andes. *Quarterly Journal of Engineering Geology and Hydrogeology*, 54, qjegh2020-023, https://doi.org/10.1144/qjegh2020-023
- Serey, A., Piñero-Feliciangeli, L., Sepúlveda, S.A., Poblete, F., Petley, D.N., Murphy, W., 2019. Landslides induced by the 2010 Chile megathrust earthquake: a comprehensive inventory and correlations with geological and seismic factors. *Landslides*, 6, 1153-1165.
- Verdugo R., González J., 2015. Liquefaction-induced ground damages during the 2010 Chile earthquake. Soil Dynamics and Earthquake Engineering 79:280–295