

SZ4D PLANS FOR NSF MSRI-2: PROGRESS & PATH FORWARD

CRESCENT SIG - November 18, 2024

Diana Roman, SZ4D Vice-Chair and Infrastructure PI Jeff Freymueller, SZ4D Steering Committee and OPC-I Co-Chair

Doug Wiens, SZ4D OPC-I Co-Chair

contact@sz4d.org

Instrumentation and Activities

Observational arrays

- EarthquakeArray
- VolcArray
- SurfaceArray

Activities

- Analysis of data from arrays
- Other observations:
 - Field geology
 - Geophysical imaging
- Numerical modeling
- Lab experiments
- Training and outreach

SZ4D Implementation Report Fig. ES-1

Locations for study

Recommend:

• Complementary domestic and international sites

Regions of Special Interest:

• Chile

70% Instrumentation; 50% Activities

• Cascadia 20% Instrumentation; 40% Activities

Alaska

10% Instrumentation; 10% Activities

SZ4D Overview

Activities Townhall November 18 (10am PT) -We apologize for double-booking with this meeting! Recording and slides will be available on our website very soon.

• A Coordinated Global Effort to Understand Subduction Geohazards

OBJECTIVE: Foster international collaboration and communication between active science networks studying subduction zone geohazards

SZ4D Overview

MSRI-2 proposal in prep: The SZ4D MultiHazard Array

Supports the implementation of research infrastructure - including equipment, cyberinfrastructure, large-scale datasets and personnel - whose total project costs fall between \$20 million and \$100 million.

- Construction only (5 years):
 - Infrastructure procurement/fabrication, commissioning, and installation
- Operations and Maintenance is separate and also must be affordable to NSF-GEO

MSRI-2 Pre-Award Process (2023 Cycle)

SZ4D is working towards an MSRI-2 submission in the next cycle (assumed 2025, so all dates +2 years).

SZ4D MultiHazard Array: Chile Node

- Main target region: 28°S-43°S
- Developed based on input from AndesNet (SZ4D's Chilean partner consortium)
- Incorporates a nested set of instrumental arrays
 - SurfaceArray
 - EarthquakeArray
 - VolcArray

SZ4D MultiHazard Array: EarthquakeArray

Phase 1:

Offshore (850 x 200 km)

- 70 OBS + APG (denser landward of trench, sparser seaward of trench)
- 50 GNSS-A (70 km spacing)
- 10 Offshore MT (multiphased suvey multiple two-month drops)

Onshore (850 x 200 km)

- 40 Seismometers (+ other sensors?)
- 36 GNSS (+ other sensors?)
- 6 Microseismicity arrays [1 BB+8 SP]

Phase 2 (6 years): Offshore (targeted deployment)

- 15 OBS
- 8 GNSS-A

Onshore (targeted deployment)

- 10 Seismometers
- 10 GNSS

SZ4D MultiHazard Array: VolcArray

Chile Footprint (1200 x 100 km + additional targets in N. and S. Chile)

22 Volcano Sensor Arrays (10+ years)

4 Volcano Imaging Arrays (2 year data collection)

Volcano Sensor Arrays

- ★ 6 Seismometers
- ★ 2*3 Infrasound Sensors
- ★ 3 Tiltmeters
- 🚖 6 GNSS
- ★2 Webcams
- ☆3 FLIR
- ★3 ScanDOAS
- ★2 UV cameras
- ★ 2 MultiGas+met station

Volcano Imaging Arrays

80 BB seismic (~10 km spacing, 40 km radius)
450 Nodal seismic (~1.5 km spacing, 20 km radius)
MT Survey Points (~10 km spacing)
Bouguer gravity/Diffuse CO₂ survey point
VSA footprint

SZ4D MultiHazard Array: SurfaceArray

Backbone Array (over 850 x 300 km region):

- ★27 Met Stations (100 km spacing)
- *15 Seismometers (35 km spacing)
- ★10 GNSS

4 Watershed-Scale Arrays (~150 x 175 km each)

Hillslope Arrays:

- 🎋 6 Fancy Packs* per watershed 18 Fancy Packs total
- 10 Midgrade Packs** per watershed 30 Midgrade Packs total
- 19 Simple Packs per watershed 57 Simple Packs total

Stream Gauge Arrays:

☆7 radar bounce gauges (stem) per watershed - 21 radar bounce gauges total

★4 simple level gauges (tributary) per watershed - 12 simple level gauges total

SZ4D MultiHazard Array: Alaska and Cascadia Nodes

SurfaceArray:

 Opportunistic studies and event response to mass movement events (Alaska and **Cascadia**)

EarthquakeArray:

- 9 OBS/GNSS-A (Alaska)
- 10 onshore seismic/GNSS (Alaska)
- 9 GNSS-A+APG (Cascadia) + 2 wavegliders

VolcArray:

- 3 Volcano Sensor Arrays (Cascadia)
- 2 Volcano Imaging Arrays (Cascadia)
- 5 Volcano Sensor Arrays (Alaska)

Opportunities to address FEC science in Cascadia

- FEC Q1:
 - Well known faults and terranes in overriding plate what is their role in strain budget and influence on megathrust behavior?
- FEC Q2 and Q4
 - Along-strike and downdip variations in coupling. Is megathrust locked to the trench, and does this vary along-strike? Is coupling linked to subduction input, upper plate structure, or both?

Possible Cascadia Corridors (input welcome!) (~3-4 GNSS-A + APG per transect)

- Northern Cascadia: Widest locked zone, which may continue to trench; overriding plate faults
- 2. Central Cascadia: Variation in locking and upper plate terranes
- Southern Cascadia: Relationship of upper plate faulting and megathrust

Refine based on other planned deployments (community geodesy experiment, OOI cable deployment plan) and logistics (e.g., bathymetry, CASIE seismic lines)

Incoming plate/plate interface

Walton et al. (2021 Annu. Rev.)

SZ4D MultiHazard Array: VolcArray

Cascadia Footprint

3 Volcano Sensor Arrays (10+ years)

2 Volcano Imaging Arrays (2 year data collection)

Volcano Sensor Arrays

★ 4 Ash Collectors

- ★ 6 Seismometers
- ★ 2*3 Infrasound Sensors
- ★ 3 Tiltmeters
- 🚖 6 GNSS
- ★2 Webcams
- ☆3 FLIR
- ★3 ScanDOAS
- ★ 2 UV cameras
- ★2 MultiGas+met station

Volcano Imaging Arrays

SZ4D MultiHazard Array Budget: Status

- Initial budget modeling based on 'wishlist' infrastructure cartoons is now complete.
- <u>The initial budget model is too big</u> (with lots of uncertainties) **We need to plan for budget and scope reduction.**

ŀ				
NSF Oversight Requirements for Major Facility versus Mid-scale				
		Major Facilities	Mid-scale RI	
	Budget Contingency	YES For Construction Stage, Monte Carlo (MC) simulation methods to demonstrate 70-90% confidence.	NO (Highly Recommended) Simplified algorithmic method to full Monte Carlo (MC) simulation, if proposed.	
1	Schedule Contingency	YES	NO	
	Scope Contingency	YES At least 10% of baseline cost	NO (Recommended based on project complexity and risk profile)	

Table 2.9.1 – Summary of Oversight Requirements for Major Facility versus Mid-Scale RI

SZ4D MultiHazard Array Budget Refinement Plan

- PI/OPC-I will continue to refine budget with input from WGs
 - Goal: Turning the budget model into a proposal that complies with the MSRI-2 solicitation and budget cap, focused on the highest priority science elements.
 - WGs will provide main guidance on priority elements.
 - Transparent process for making these decisions (change control)
- SZ4D WGs will continue to refine the experiment plan
 - Continued footprint refinement (target volcanoes, watersheds, fault segments)
 - Design proposal (in review) to assess critical instrument density/topology (if funded, basis for prioritization by WGs)

NSF PROPOSAL SUBMITTED TO NSF MGG MAY 2024 (PENDING) **"Data- and model-driven optimization of the SZ4D MultiArray"** (Lead PI - Roman) ("Design Proposal")

Table 1. Synopsis of the proposed Work Packages

Work Package	Summary of work	Personnel
MegaArray-1	Assessment of seismicity detection capabilities in Chile	Barcheck, Potin, Ruiz
MegaArray-2	Synthetic seismic resolution modeling of MegaArray configurations	Fan
MegaArray-3	Modeling to assess GNSS resolution	Newman, Baez
MegaArray-4	Optimizing APG distribution to detect offshore transient distribution in the face of realistic ocean noise	Wei, Fredrickson, Wallace, Moreno
MegaArray-5	Assessment of oceanographic/bathymetric conditions and implications for OBS deployment logistics	Collins, Barclay, Ferrini, Caceres
SurfaceArray-1	GIS database assembly for candidate watersheds in Chile	Finnegan
SurfaceArray-2	Coupled hydrologic-sediment transport modeling to optimize SurfaceArray	Yanites
VolcArray-1	Synthetic seismic resolution modeling of VolcArray (VIA) configurations	Byrnes
VolcArray-2	Conceptual VolcArray (VSA) design - to be based on USGS/NVEWS - no NSF funding required	N/A
MultiArray-1	Synthesis and Integration	SZ4D OPC-I EarthScope Consortium

SZ4D MultiHazard Array Scope Refinement Plan

- Optimize the plan based on quantitative analysis of current capabilities, and resolution simulations (design proposal, if funded)
 - Some infrastructure in Chile already exists (e.g., seismic, geodetic networks)
 - Some instruments can contribute to multiple arrays
 - Tradeoffs between spatial coverage and spatial density will be analyzed
 - WGs will provide main guidance on priority targets.
 - Transparent process for making these decisions (change control)

Transition to Operations and Decommissioning

- All instruments will operate for a minimum of 10 years
 - Domestic data will be made openly available immediately
 - Raw data + metadata and limited data products (input welcome!)
- Decommissioning plan long-term adoption(?)
 - Depends on commitments/funding
 - Alternatively, return to instrument pools
 - Input welcome!

SZ4D MSRI Planning - How to Stay Informed and Engaged

- AGU 2024 townhall Wednesday, December 11, 6-7pm
 Opdates and a breakout discussion on the MSRI proposal
- Stakeholders meeting (invite-only) prior to USGS SZS workshop in January (CRESCENT reps will attend)
- Where to provide input, get updates, and ask questions in the interim:
 - New 'Infrastructure Planning' webpage @ www.sz4d.org
 - Email the SZ4D OPC-I or Infrastructure PI**
 - Email the SZ4D Working Groups**

