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Traditional vulnerability estimates:

Tsunami Fragility Functions (TFF)

» Adapted from seismic hazard analysis conventions

* Quantitative vulnerability models

 Link hazard (demand parameter) to risk (damage exceedance)
 Asset-type specific

Definitions:

Koshimura et al. 2009 Reese et al. 2011

[TFF are] measures for estimating structural damage [...] to [TFF] give the probability of being in or exceeding a
tsunami attack. [They] are expressed as the damage specific damage state (DS) as a function of the demand
probability of structures with regard to the hydrodynamic imparted to the structure by the hazard.

features of inundation.



Brief history of TFFs

. . - . , Framework
« Koshimura et al. 2009 introduce fragility functions for tsunamis =

EQ source

* Reese et al. 2011: multi-class TFF using GLM

Tsunami

» Mas et al. 2012: TFFs in areas with low data availability inundation

simulation

 Suppasri et al. 2013: TFF for Japan, following the 2011 Great East ¥

Validation
with survey

Japan Earthquake

» De Risi et al. 2017: TFFs accounting for input uncertainty



Use-cases and limitations of TFF

 Use cases:
» Academic discussion
» Proposed implementation in PTRA

 Limitations:
 Not transferrable

 Demand parameters usually proxies for
direct loads

o inundation height - Hydrodynamic force
« Aggregated measure

» TFF Applications for disaggregated

@ moderate

estimates: -
a) Adriano et al. 2014 (No ground truth)
b) Rehman & Cho 2016 (No ground truth)
c) Moya et al. 2018 (Earthquake damage)

M Washed away
I Collapse

Complete
Major =2 Minor

Fig. 8. Left: An instance of a synthetic EBDS. Right: The actual EBDS from field survey.



Tsunami Fragility Functions in context

e Push for standard
integrated PTHA - PTRA
workflow (AGHITAR, GTM)

 Guidelines for policy &
insurance

[1] AGHITAR: Accelerating Global science
In Tsunami HAzard and Risk analysis
[2] GTM: Global Tsunami Model

e.g., Community Resilience, Social Vulnerability

@ Composite multi-dimensional risk and vulnerability indicators
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Figure courtesy of: J. Behrens et al., “Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps,” Frontiers in

Earth Science, vol. 9, 2021.




Damage-to-loss

= GEM
Disaggregated damage T
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Adaptability and uncertainty

 Why are TFF not applicable to other areas?
 Demand parameter - result of inundation model parameters
» Different areas > different model parameters
» Different areas - different structural response

* Solutions:
» Account for input uncertainty around model parameters and structural response

« Add parametric proxies for influencing factors
[bld material, bld density, coastal distance, elevation, etc...]



Experiments




Random forests for fragility estimates
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Experimental results

. |moc1moc 2moc 3

0 1L 2 km
e ata)

» Tested direct TFF application methods (slide 7)
 Compare to our proposed RF method

Average

cpe W b @

. [moc 1@ S F,-score
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. A (Adriano et al.) 0.576
B (Moya et al.) 0.593
C (Ours) 0.628
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Adriano et al. Method
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Discussion & limitations

e Results:

« Damage learned from physical parameterization of tsunami and environment
 Direct fragility estimates for individual buildings

e Limitations:

» Performance scales with number of classes (more classes - lower performance)
* Does not account for inherent class ordering

» Learns unexpected spatial response
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Probabilistic approach - overview

Bayesian decision making toolbox:

1. Allows us to include more features (than TFF)

2. provides optimization routines, e.g. HMC, VI, etc...

3. Places distribution over parameters - input uncertainty

4. Propagates uncertainty to the posterior distribution - output uncertainty

HMC: Hamiltonian Monte Carlo, VI: Variational Inference



Probabilistic approach - results

Ground truth

* Generally improved results

B DS

* Relative low inundation - Greater o gpmme 558 ol e
uncertainty(D52) =sc}

» Hypothesis: earthquake effects are more
relevant at lower inundation levels
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Discussion & Limitations - cont.
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Prediction

Binary Damage |

Grund truh

Inland misclassification
correlates with “pancake

collapse”

In areas of low inundation
height, the model has high

confidence but has no
notion of EQ effects.




Discussion & Limitations

Advantages over previous methods:

* Increased performance

 Spatially consistent (learning better, more interesting trends)
» Appears to generalize in-distribution

Limitations:

« Qut-of-distribution (Noto case) performance much lower on destroyed class:
1. Hypothesis: significantly greater influence of EQ impacts
2. Parameter definition require knowledge of domain (not naive like random forest)



Takeaway message:

1. We developed a probabilistic method for building fragility estimation
2. Our method performs in-distribution (not necessarily in-domain)

3. Measuring the predictive uncertainty, allows:

* |ldentify patterns that are not captured by the parameters (e.g. EQ impacts)
 Inform decision makers about potential extra risk

4. Fits into the PTHA + PTRA framework - disaggregated estimates
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