Paleoseismologic data as constraints on
subduction zone earthquake recurrence and
rupture characteristics
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Paleoseismology

Understanding of earthquake timing and extent
primarily comes from geologic earthquake proxies

Long records that span several earthquake cycles
are vital

Paleoseismology focused on just timing provides a
limiting view of the system

Geologic proxies provide unique insight into
specific rupture characteristics

subsidence: slip magnitude and heterogeneity

tsunami: location and magnitude of shallow
deformation

turbidites & landslides: location and magnitude of
strong shaking
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Fig. modified from Walton & Staisch et al. (2021)



Environmental recorders

Coastal stratigraphy preserves decimeter-scale
interseismic and coseismic deformation and
tsunami inundation

Variable slip magnitude and location leads
to variable land-level change

Similarly, variations in tsunami inundation
extent may be indicative of variable near-
trench rupture

Coseismic turbidites result when earthquake
shaking causes unstable, steep, submarine
canyon walls to fail, creating coarse, turbulent
sediment flows

Terrestrial lakes are similarly sensitive shaking
proxies, and some show evidence for tsunami
inundation, too

Fig. modified from Pearl & Staisch (2021)



Environmental recorders

Coastal stratigraphy preserves decimeter-scale
interseismic and coseismic deformation and
tsunami inundation
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Age Control and Correlatit

To be useful, proxies must be datable

Most paleoseismic datasets rely on
radiocarbon dating

Typical age uncertainty is several
decades to a few hundred years

However, dendrochronological analysis
can provide annual to seasonal
precision

Large age uncertainties allow for varying
interpretations of the geologic record

Multiple magnitude 8 earthquakes
that occur over a short period of
time (years to decades) could be
misidentified as a single full-margin
event
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Age Control and Correlat

Multi-proxy approach to recurrence and source

Coastal evidence along Hikurangi margin is extremely complicated given multiple source mechanisms

Turbidite paleoseismology is particularly useful to examine spatiotemporal trends and that are otherwise difficult

to tease out from onshore evidence (Pizer et al., 2024)
Success requires sufficient age precision and establish synchronous deposition
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Age Control and Correle

Along-strike correlations

The age and overlap of paleoseismic
events underpins our knowledge of CSZ
earthquake size and frequency

Most work on assessing recurrence often

relies on a Maximum Rupture Model
Largest rupture possible given age
overlap

Turbidite datasets previously tied the

onshore evidence together
Interpreted to suggest 19-20 full
margin events over 10 kyr

Horizontal bars

Juan de Fuca

Cascadia Channel
M turbidite
= hemipelagic
996
Klamath Canyon

W turbidite
= hemipelagic

John's River
=]

Alsea Bay
=

Sixes River
=

Hydrate Ridge
Eaturbidite
= hemipelagic

Astoria Channel
W turbidite
= hemipelagic
Willapa Bay
2@
Talbot Creek
-]

Lagoon Creek
=

Central
QOregon

Southem
QOregon

— Barkley Canyon
age range of paleoseismic record Eturbidite mWturbidite
(7] == hemipelagic == hemipelagic
offshore onshore 5]
£| Rogue Apron Smith Apron
Vertical bars | Ebidite mturbidite
full margin ruptures (GF 2012 O _=hemipeagic = hemipelagic
0 1729374 ;6 7+( ) Trinidad Plunge Pool Eel Channel
#of overlapplng — mEturbidite Eturbidite
D D D . .onshore sites o[~ Deserted Lake South Vancouver
. = A 2
Onshore evidence type 2| Nehalem River Yaquina Bay
¥ coseismic subsidence 2l m L]
A tsunami evidence o| Coquille River Bradley Lake
— =@
-+
g s
c»
<
> .
— . N ] =5 i
e § et
f{m—am —mm-m = C
5 i
38
Y=z
== = EO M =
£ c E =
[T
£ g
20 -
EmE == l = T

m m I
€ of = .| = == !'1-!
z38 =] -
] | =
o« M~ QO wy < m ~ = o
i i i [ = = = oo
10000 2000 8000 7000 6000 5000 4000 2000 1000

Calendar Years BP 1950

1700 CE

0]

Onshore paleoseismic site
[ Subsidence and tsunami record
A Tsunami record only
Turbidite core site
© Correlated age data and stratigraphy
@ Correlation to core with ages
© Correlation in general

",__ Wd'_e §
r, ve
) . A
a es rted ‘
Vancouver
Island

BC
\' "Tofi PortAIbe i saith—

Barkley iﬁ?

gJuanFuca .

a5

e
lJLIIHa) Ute!

7 Olympic 45?
Peninsula fif

Willapa Bay

e & "

— & Columbia
@'be River. § *©

W
| @b 2 Nehalem River
- \'*
ﬁ!ydrate ‘ Yaquina Bay

} Heceta
Bank

(HE2  Bseapa
4x' : o

445

_ Astoria Channé!

}{ A Talbot Creek

& Coquille River
Cape Bradley Lake

Blarico i Sixes River
Rogus

e

Klamith

: ” \?nldad
L

'lEel & CA

—_—— Cap

| Mendocmo

£ S _ Mem lncmo a5
{ \'Z‘JN Oy Q)

128 4126 W24
Fig. modified from Walton & Staisch et al. (2021)

425

Lagoon Creek




Increasing # of reservoir correction changes »

Age Control and Correlat
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Age Control and Correlat

Variable rupture length
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Age Control and Correl

Variable rupture length
Correlation using a Maximum Rupture Model
for terrestrial ages indicates variable rupture
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Age Control and Correl:

Variable rupture length
Correlation using a Maximum Rupture Model
for terrestrial ages indicates variable rupture

length and frequency through time (Neison et al.,
2021)

» Persistent rupture barrier ~Nehalem Bank
* More frequent rupture in southern CSZ,
particularly in last 1.6 kyr

Discordance in the details

Ages from the penultimate “full-margin”
event may actually show evidence for a
sequence of three partial ruptures

» Geographically and statistically distinct
age groups

» Bradley Lake record suggests two events

« Current “C data and age models lack the
precision to disprove either hypothesis
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Tsunami mapping and

Tsunami deposit mapping provides a key
benchmark for rupture models

LaSelle et al. (2024) use previous sand
inundation limits to constrain sediment
transport models that arise from variable
rupture characteristics and tidal stage

Best fit model suggests 0.8-1.0 m
subsidence but tsunami must inundate at
MHHW for the 1700 CE Cascadia event

Vancouver
o

Greater slip is permissible but the modeled
sand is thicker and farther inland than
observed
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Fig. modified from LaSelle et al. (2024)



Tsunami mapping and

Tsunami deposit mapping provides a key
benchmark for rupture models

LaSelle et al. (2024) use previous sand
inundation limits to constrain sediment
transport models that arise from variable
rupture characteristics and tidal stage

Best fit model suggests 0.8-1.0 m
subsidence but tsunami must inundate at
MHHW for the 1700 CE Cascadia event

Greater slip is permissible but the modeled
sand is thicker and farther inland than
observed

However...
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Fig. from LaSelle et al. (2024)



Tsunami mapping and

Tsunami deposit mapping provides a key
benchmark for rupture models

Ca. 1700 CE tsunami sand thickness
° C5) 9) Sand thickness (cm)
LaSelle et al. (2024) use previous sand

inundation limits to constrain sediment
transport models that arise from variable

rupture characteristics and tidal stage

o 0 cm of sand above buried soil

O Sites with subsidence estimate

Best fit model suggests 0.8-1.0 m
subsidence but tsunami must inundate at
MHHW for the 1700 CE Cascadia event

Greater slip is permissible but the modeled
sand is thicker and farther inland than
observed

However...

Fig. from LaSelle et al. (2024)



Tsunami mapping and

New mapping pushes the observed limit
inland

CRECENT CPAL fieldwork in Oct. 2023 and
subsequent high resolution laser grain size
analysis

Percentages are of sand-size particles
across 1700 CE event horizon

Diatom analyses across the horizons also
indicate marine incursion

Broken valves and marine provenance can
be tracked farther inland than sand, giving a
closer estimate of inundation extent
e.g., Tanigawa et al. (2018) observed
marine diatoms ~2 km farther than sand
in 2011 Tokohu-oki tsunami

Fig. from Priddy et al. (2024)



Tsunami mapping and
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New mapping pushes the observed limit
inland
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Tsunami mapping and

New mapping pushes the observed limit
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Fig. from Walton and Staisch, et al. (2021)
Recurrence and ruptu

What do we know?

« A multi proxy approach to paleoseismology provides the best constraints for rupture source
« Coastal deformation and tsunami sand extent are excellent benchmarks for rupture models
* Precise ages really matter

What don’t we know?
* In many cases, age uncertainty prohibits us from definitively identifying rupture extent and source
* Rupture characteristic variability over time

(A) TIME-DEPENDENT (B) CLUSTERED TIME-DEPENDENT (C) TIME-INDEPENDENT

What do we need to do to know what we
don’t know?
« Better age control

there are no bad ages, just bad context

STRESS

« High resolution data on at more sites
onshore and offshore, ideally

CUMULATIVE SLIP
CUMULATIVE SLIP
CUMULATIVE SLIP

\

\

>

« More models of past events using
paleoseismic benchmarks — - -

TIME



Ongoing field efforts

CPAL/CoPes/USGS fieldwork and analyses
Fieldwork in 2023-24 was targeting known paleoseismic sites with
good evidence for subsidence and tsunami inundation
Tsunami inundation mapping (1700 CE)
Willapa Bay, Lagoon Creek, Salmon River, Coquille River
Downcore age control
Lagoon Creek, Coquille River
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Ongoing field efforts

CPAL/CoPes/USGS fieldwork and analyses

Fieldwork in 2023-24 was targeting known paleoseismic sites with

good evidence for subsidence and tsunami inundation
Tsunami inundation mapping (1700 CE)
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QUESTIONS?




Age Control and Correlat

Systematic reanalysis

Evidence Rank
(sum of criteria points)
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Fig. from Staisch et al. (in prep)
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