FEMA's conceptualization of tsunami risk

Kara Jacobacci

Risk Indices vs Life Safety

FEMA.GOV

Exposure

is a *natural hazard consequence factor* that is the representative value of buildings, population, or agriculture potentially exposed to a natural hazard occurrence.

Annualized Frequency is a *natural hazard incidence factor* that represents the expected frequency or probability of a natural hazard occurence per year.

Historic Loss Ratio

is a *natural hazard consequence factor* that represents the estimated percentage of the exposed building value, population, or agriculture value expected to be lost due to a natural hazard occurence.

Emergency Management Agency

Risk Indices

Risk Index Equation

Expected Annual Loss is a *natural hazards component* that represents the average economic loss in dollars resulting from natural hazards each year.

Community Risk Factor is a scaling factor that incorporates Social Vulnerability and Community Resilience into the National Risk Index

NRI represents the potential for negative impacts resulting from natural hazards.

Community Risk Factor

Social Vulnerability

is a consequence enhancing risk component and community risk factor that represents the susceptibility of social groups to the adverse impacts of natural hazards.

•

Community Resilience

is a consequence reduction risk component and community risk factor that represents the ability of a community to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover rapidly from disruptions.

Expected Annual Loss

represents the average economic loss in dollars resulting from natural hazards each year.

Illustration of Risk Component Scores

County	EAL	v	Social ulnerability	C F	community Resilience	Risk	
County 1	99.66		78.84		23.65	99.68	
County 2	99.87		37.43		78.36	99.65	
County 3	99.51		73.07		70.85	99.55	
County 4	97.59		98.82		1.15	98.31	
County 5	97.09		53.85		45.23	96.85	
County 6	81.40		99.71		1.30	87.75	
County 7	77.41		71.96		0.86	84.98	
County 8	52.40		12.35		94.30	47.98	
County 9	47.38		50.06		33.90	48.49	
County 10	9.19		28.13		75.84	7.86	

4

		FREQUENC	Y				EXPOSURE				HI	STORIC LO	SS RATIO					
				Co	Consequence										В	ayesia	n Leve	ls
Hazard Type	Data Source	Period of Record	Hazard Occurrence Basis		Types	72	Exposure Area	Method for Exposure Value Estimation	Data Source	Period of Record	Event Duration Can	Loss	Zero-Loss Padding	Urban Rural Solit	County	Area	Region	National
Avalanche	ASU	1960-2019	Event	~	1		Representative Exposure	Default population & building		1996-2019	cup	Timeframe	, and the	opire	~			~
Coastal Flooding	*	Annualized	Event	1	1		Susceptible Area: Developed area in	Developed area density	ASSU Address Gates Manager	1996-2019		Consecutive			~	~	~	
Cold Wave	8	2005-2021	Event day	1		1	Widespread: Average hazard	Developed area & agriculture	3	1996-2019	31 days	Single day	~	1	~	~	~	~
Drought		2000-2021	Event day				Widespread: Average agricultural area	Agriculture value density	ASSU Address States University	1996-2019	365 days	Single day	~		~	~		~
Earthquake	EUSGS FEMA	Annualized probability	Event	×.	1		Expected annual loss & exposure from Estimated Annualized Earthque	the FEMA P-366 study: Hazus® ake Losses for the U.S.	ASSU Adams State Distantly	1960-2019		Timeframe			~	~		~
Hail	۲	1986-2021	Event	1	1	1	Widespread: County/Census Tract	Total value	ASLI Atlance Rate University	1996-2019		Single day	~	~	~	~	1	~
Heat Wave	۲	2005-2021	Event day	1	1		Widespread: Average hazard occurrence size	Developed area & agriculture value densities	ASSU Arizona Balas Distantely	1996-2019	31 days	Single day	×.	~	~	1	~	~
Hurricane	3	ATL: 1851-2021 PAC: 1949-2021	Event	1	1	×	Widespread: Average hazard occurrence size	Developed area & agriculture value densities	Adapta State University	1996-2019		Consecutive day	- 2	1	N/A:	Regres	sion N	lodel
Ice Storm	7	1946-2014	Event day	1	1		Widespread: Average hazard occurrence size	Developed area density	ASSU Articular Date University	1996-2019	31 days	Single day	~	~	~	~	1	1
Landslide	(199)	2010-2021	Event	1	1		Susceptible Area: Landslide susceptible area	Developed area density	Assu Adapte State Description	1996-2019					\checkmark			
Lightning	3	1991- 2012	Event	1	4		Widespread: County/Census Tract	Total value	ASLL Adams Frain Discoursely	1996-2019		Single day	1	~	~	~		~
Riverine Flooding	3	1996-2019	Event day	1	1	1	Susceptible Area: Land use area within 1% annual chance floodplain	Developed area & agriculture value densities	Alterna Blate University	1996-2019	31 days	Single day	1		~		1	
Strong Wind	۲	1986-2021	Event	1	1	1	Widespread: County/Census Tract	Total value	Adams Brate Diseasily	1996-2019		Single day	1	1	~	~	~	4
Tornado	S	F0-1:1986-2021 F2-5:1950-2021	Event	1	1		Representative Exposure: Average historical damage size by sub-type	Average density	Addona Balan University	1996-2019					~	~	1	1
Tsunami	3	1800-2021	Event	1	1		Susceptible Area: Developed area within inundation zone area	Developed area density	ASSU Adverse fights University	1996-2019		Consecutive day	~		~	~		~
Volcanic Activity	Besthartist	9310 BCE-2022	Event	1	1		Susceptible Area: 100-km buffer around active volcano locations	Developed area density	Alcora Gata University	<mark>1960</mark> -2019		Timeframe			~	~		~
Wildfire		Annualized probability	Event	1	1	1	Susceptible Area: Areas where modeled flame length > 8'	Average density	ASSU Address Birts Address Birts	1996-2019		Timeframe			~	~		1
Winter Weather	8	2005-2021	Event day	1		1	Widespread: Average hazard occurrence size	Developed area & agriculture value densities	Arizona Bate Driverally	1996-2019	31 days	Single day	✓	1	\checkmark	1	~	

NRI Tsunami Methodology Update Goals

Goal 1			
Building EAL – Hazus based	Goal 2		
AAL using scenarios or probabilistic data and NSI.	Expand Hazus Tsunami to East	Goal 3	
Population EAL - USGS Evacuation Tool for Population Exposure in run-up zones based on pedestrian	Hazus Tsunami is not currently available in these areas. GBS data needs to be developed.	Harbor Facilities, Liveaboards, and Other Facilities without Hazus Generated Losses	
evacuation times. Priority – Pacific and Caribbean	Develop Hazus analysis for Gulf of Mexico and Atlantic Coasts.	Develop method for estimating losses for this in coordination with NTHMP.	
Estimated Completion:		Enhanced Population Exposure	
September 2024	Estimated Completion: TBD Dependencies: • Hazus East Coast data development • NTHMP East Coast data	Implement any updates around distant event and tourist populations	

Helping people before, during and after disasters

Hazus Analysis

Hazus analysis level conducted is dependent on the available source data For each scenario provided by the state/territory level entities:

- Data preprocessing to standardize data types and clean data across states
- Incorporate non-randomized National Structure Inventory data for exposure
- Conduct a Hazus analysis to calculate Building and Contents losses at the Census block level
 - Level 1: Runup only
 - Level 2: Flow depth grid and velocity data
 - Level 3: Flow depth grid and momentum flux data

Building Loss

- Estimated using HAZUS 6.1
- Measured as Capital Stock Loss which is the replacement value of structural, nonstructural, and content damage
- Building data comes from the National Structure Inventory (USACE)

This study only evaluates population loss for permanent residential populations

Population Loss

Population losses were estimated using a USGS evacuation analysis study. This study estimated the number of permanent residents who could not evacuate from a local tsunami in time, assuming they began walking to high ground 10 minutes after ground shaking started.

To calculate the population equivalence loss in dollars, the Value of a Statistical Life (VSL) of \$12.5 million (2022) was used to convert population loss estimates into a monetary population equivalence value.

Works in Progress

- Update to the NRI with methodology improvements
- PTHA method using transfer functions
- HAZUS 7.0 (ArcGIS Pro)
 - Expanding tsunami module to East and Gulf
 Coasts

Future Goals

Further research areas include the potential impacts to marine and harbor facilities, nonpermanent populations, additional tsunamigenic event types beyond earthquakes, and tsunami risk analysis for the East and Gulf Coasts Raw TTF Output at Oregon Site

PTHA with Transfer Function

Tsunami Transfer Function

Data-driven approach capitalizing on existing PTHA from CGS, ASCE, Hawaii OPSD, western state DOTs

"Transfers" tsunami hazard from offshore tsunami amplitude curves to onshore inundation metrics: flow depth, velocity, and momentum flux

Efficient methodology to develop consistent data from 10 to 3000-year return periods across Pacific geography

Tsunami Losses

Hazus 6.1 modeling to compute return period and annualized losses

Currently testing at three Pacific sites, goal to share findings in 2025.

Region 10 Tsunami Investments

Cooperating Technical Partners Investments FY 2024

Washington

- \$481,000 over 3 years for Probabilistic
 Tsunami Hazard Assessment
 - Original scope included evacuation walk maps – this was determined to not fit under RiskMAP and had to be removed in order for HQ to approve the project and delegate extra funding to cover the gap in Region 10's CTP budget
 - Extra \$350,000 granted to Region to meet the \$481,000 total

Alaska

- \$210,000 over 2 years for Alaska tsunami portal: A GIS hub for tsunami mitigation products
 - anticipating approximately 60 communities with existing info to be on the pilot database
- \$100,000 for Alaska Geohazards Summit will feature multiple hazards including tsunamis

FEMA R10 Points of Contact

Hannah Rabinowitz (Primary) Earthquake Program Manager Hannah.Rabinowitz@fema.dhs.gov

Kara Jacobacci Risk Analyst Kara.jacobacci@fema.dhs.gov

HAZUS Levels

Uses runup amplitude and DEM using an empirical equation to produce a velocity grid.

The empirical method misses high velocity areas related to constrictions where flow depths may be shallow.

AK – AS – GU – CNMI – HI*

Assumes that max velocity and flow depth occurs at the same time and place. 3

Uses median flux and flow depth to produce the most accurate analysis from a hazard input data perspective.

> California, Hawai'i, Oregon, U.S. Virgin Islands, Washington