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Context & Outline

* Along-term multi-hazard risk assessment is essential for developing
disaster risk management strategies to achieve a disaster resilient and
sustainable community.

* Tofino is one of the most exposed locations in Canada to seismic-tsunami
risks from the Cascadia subduction zone in the Pacific Northwest.

» This presentation summarizes a long-term multi-hazard risk assessment
for Tofino in the context of ‘fragility curves: from hazard to risk'.

= Current multi-hazard risk modeling and assessment

» Analytical fragility curves — state-dependent fragility curves coupled
simulations of shaking & tsunami load sequences

» Fatality risks for residents and tourists (frequency-number of fatalities
(F-N) curves and evacuation modeling)



Tofino

» Located at Esowista Peninsula within
Clayoquot Sound on Vancouver Island

- Natural scenery, sandy beaches, lakes, =8
inlets, and ancient rainforests | |

« Exposed to the Cascadia subduction
zone — earthquake and tsunami risks —
possibility for M9 megathrust event

* Other coastal hazards (storm flooding)
and sea-level rise (+1.0 m by 2100)

« Could be isolated after major events




Tofino

* Tofino Town — consisting of
commercial and residential
areas — elevated areas
(above 10 m)

 Beach areas — residential
and camp sites/resort
facilities - below 10 m
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Multi-hazard Risk Assessment for
Earthquakes and Tsunamis

« Earthquake-tsunami catastrophe modeling:

Risk = Hazard X Exposure X Vulnerability Vulnerab
ility

Common effects Il Ground Seismic :
ro-o- T EEEEEEEES motion = ——>| vulnerability
; Megathn_lst Cascadia I modeling modeling I
: subduction earthquakes I
| 1. Ground motion - Damage model
I | Earthquake Stochastic 1 1 model - Loss model Multi-hazard
| occurrence ————> rupture I I - Correlation model - loss
I modeling modeling I | estimation
|
! - Historical events - Fault model ! _ ] 1 Single- and multi-hazard
L. Geological data - Scaling relationships | _ Tsunar_nl Tsun_a_ml exceedance probability curves
I - Renewal model - Spectral synthesis | inundation ——>|  fragility I - Risk metrics
I - Magnitude-recurrence - Kinematic rupture modeling modeling I - Joint multi-hazard maps
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Multi-hazard Risk Curves

 For low-lying buildings, shaking and tsunami risks are of similar magnitude.

 Local topography is important — need for multi-hazard risk-based microzonation.
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Multi-hazard Maps for Return Period of 2500 years
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Time-dependent Tsunami Risk Curves

* Time-dependent tsunami risk curves
are obtained by considering various
elapse times since the last event
from 2000 (elapse time of 300 years)
to 2100 (elapsed time of 400 years).

» With the progress of elapsed time,
tsunami risks increase gradually.

* Note that changes in exposure are
not taken into account, which is very
important.
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Sea-level Rise Impact on Tsunami Risk Curves

* The effects of different climate scenarios (RCPs) can be important for the future
situation.
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Current & Future Actions for Disaster Risk
Reduction & Resilience for Tofino

- Seismic upgrading of critical
facilities (hospital & school)

- Water supply system upgrading
- Increase tsunami signposts
- Vertical evacuation shelter

- Road and power suply
risk mitigation

- Pre-disaster recovery planning,
including business continuity and
financial transition plans

- Earthquake insurance take-up

- Multi-hazard risk map
- Evacuation route map
- Disaster education

- Evacuation drills

- Staff training

- Community/business

o
>

§
Disaster Risk

Reduction engagement & outreach
Disaster
2 Resilience 4
Qo (3’ ~ - Emergency response protocols
O, (o) - Clarification of roles and duties
G/J, Q&QQ for post-disaster building collapse
y assessments and search &

rescue activities



Research Need for Improved &
Extended Fragility Curves



Zhang et al. (2020)

Analytical Fragility Curves n EESD

* The concept of analytical fragility curves is well developed in earthquake
engineering.

* For example, mainshock-aftershock sequences from the Cascadia subduction

earthquake were applied to wooden houses in Victoria, BC, to develop state-
dependent seismic fragility curves.
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Need for Artif

Frequency-dependent
rupture process:

The background fault
rupture has influence
on low-frequency
source process.

The strong motion
generation areas
have major influence
on high-frequency
source process.

Background slip distribution
can be represented by
inverted source models
based on low-frequency

data (e.g. teleseismic,
tsunami, and geodetic).

The slip distribution is
based on Satake et al. (2013).

Goda et al. (2017)
inSERRA
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Strong Motion Modeling

Multiple-shock ground motions are modeled by invoking stochastic finite-fault
(SFF) simulations multiple times.

Each finite-fault rupture is represented by a propagating array of Brune
point-sources with appropriate trigger delays.

M, Seismic moment

Stochastic point-source: ment
R Source-to-site distance

The Fourier amplitude spectrum for
source, path, and site effects is given by:
Y(Mo,R.f) = E(Mo,/)P(R/)S(/)-
Perform inverse FFT of the total
spectrum Y with random phase.

Ground surface

Site (S)
Site amplification
Kappa filter

Source (E)
Moment magnitude
Stress parameter

Geometry Path (P)
Geometric spreading 4
Anelastic attenuation 4
%Duration 4
RN

Y¢  Hypocenter
----- » Rupture propagation
O  Sub-source trigger point
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Shaking Hazard Analysis

 —— y -

| Peak ground accleration |

(contours)

cm/s?
1000

500

Tsunami Modeling

Initial boundary conditions for tsunami

b

simulation are obtained by calculating
vertical deformation due to earthquake
slip distribution using Okada as well as
Tanioka-Satake equations.

Vertical deformation

Tsunami simulation is carried out by
evaluating nonlinear shallow water
equations based on leap-frog
staggered-grid finite difference scheme.

The bathymetry data are nested such that
higher resolutions are considered for
near-shore regions.

The tsunami inundation is evaluated based
on a moving-boundary condition method.

The vertical deformation shown above

is based on the Satake et al. (2013)
source model.

MYGHI12

Simulation >
MYGHO08 Simulation

Synthetic accelerograms are generated at multiple
locations using the multiple SFF method, and
various response quantities can be evaluated.

Uncertainties of source parameters (e.g. moment
magnitude, slip distribution, and stress parameter)
are taken into account.

Observation

Simulation

Observation

200 s

Observation (KiK-net)
@ 900+ cm/s? © 300 to 500 cm/s?
@ 7001to0 900 cm/s2  © 100 to 300 cm/s2

g

Tsunami Hazard Analysis

O 500to 700 cm/s2 @ <100 cm/s?

Maximum tsunami wave height contours, tsunami wave profiles, and
inundation maps are obtained by taking into account uncertainties in
earthquake rupture processes.

Maximum tsunami
wave height

Iwate Central

Iwate South

Miyagi §
North

Tsunami wave profiles
at GPS gauges —— Observation

JW

_/”\M

2 hours

The observed wave profiles are obtained
from Kawai et al. (2013).

0 4 8 12 16 20

The maximum tsunami wave height shown above -:::- m

is based on the Satake et al. (2013) source model.




MYGHO8-NS
0
?E;n\ -500 | ] |
E MYGHO8-EW
£ 0
E‘ .
(@) 140.8°E  141.0°E  141.2°E 1414°E 141.6°E
38.8°N
Maximum wave height
Reference model 2 14
(Satake et al. model) &
38.69N | MYGHI12
E Q)
13,
38.4°N
38.2°N
MYGHO08
38.0°N
37.8°N

Need for Artificial Shaking-Tsunami Sequences

500

leration (cm/s?)

103

Eoweloouy Wave height (m)

[EW] (m/s)

Flow velocity
[NS] (mv/s)

MYGHO08
Base case

—~
o
N~

N
g
10 | =
o
5t (]
<
0 f >
<
10 3
5 &=
[~
’ 7 I
5 F
(b)
-10 .
10 ~
. g
- =
N
0 A
\/ —8
)
5t %
_10 1 1 1 L B
0 1000 2000 3000 400
Time (s)
Vibration period (s)

Comparison of observed and simulated
ground motions at MYGHO08 (lwanuma) and
MYGH12 (Shizugawa).

20 1 I T I T 1 I
Site 3 (MYGHO08)
15 | == Median .
- - - 10th/90th percentiles
10 F 550 stochastic models X -
5t ;" /\\._ _____________
O | | 1 | - L | |
0 1000 2000 3000 4000 5000 6000 7000
Time (s)
20 . . :
Site 14 (MYGH12)
15} - Median -
i - - = 10th/90th percentiles
10 F ‘ \ —— 550 stochastic models
5 B
0 | 1 | 1 | 1 |
0 1000 2000 3000 4000 5000 6000 7000

Time (s)



Exposure & Fatality Models

Goda & Evans
(2023) in ASCE

« The District of Tofino carried out a detailed exposure (population) survey for
tsunami evacuation purposes.

 The summer-time populations are assigned to individual properties.
« The seasonal and daily variations of the population are considered.

* The fatality models by
Suppasri et al. (2016)
characterize the
parametric uncertainty of
the fatality ratio as a
function of tsunami flow
depth.
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Tsunami F-N Curves for Tofino

* The stochastic tsunami simulation model, population exposure model, and
tsunami fatality model are integrated.

* The conditional probability distributions of the number of fatalities can be
evaluated for four magnitude scenarios.

* By accounting for the @ 16
magnitude-frequency ool
relationship, the 08|
unconditional probability 07|

distribution of the number
of fatalities (i.e., F-N curve)
IS derived.
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Future Plan for Tofino

* Coupled strong motion and tsunami simulations for the Cascadia
subduction events:

- Stochastic finite-fault model for the Cascadia events first
- Physics-based low-frequency ground motion simulations later

» Development of multi-hazard fragility curves (shaking, tsunami,
aftershocks, etc.)

« Human fatality model -> Warning and evacuation effects to be simulated
through agent-based model

« Multi-hazard risk-based microzonation
« Other hydroclimatic hazards (e.g. coastal flooding)
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« About 2500 5.460 |
people live in
Tofino. There are 5455 |
2000+ buildings
and facilities. In 5.450
summer, many
tourists visit and ¢ ,4s
stay in Tofino.

e Four First 5 440 Esowista&Ty-Histanis;t
Nations :
communities
(Tin-Wis, 5.445 |
Esowista, Ty-
Histanis, and
Opitsaht) “Her 288

0.280  0.285 0.290 0.295  0.300 x106

P

2.90x10°



Influential Hazards



Historical Events in Cascadia

* In the past, various geological and geophysical investigations have been
conducted to determine the frequency of major subduction earthquakes (M8.0

and above).

* The offshore turbidite history by Goldfinger et al. (2012) indicates that 40 events
occurred over the last 10,000 years (1 in every 250 years).

« Among these historical events, a full rupture (extending to Vancouver Island)

occurred 19 times (1 in every 530 years). The most recent

eventin 1700
B.C. AD. )
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Time-dependent
Earthquake Occurrence
Model

* The earthquake occurrence history of
the Cascadia full-ruptures shows
clustering and gaps.

* The radiocarbon dating of the turbidite
data involves uncertainty (c. 100 years).

* The resampling of the earthquake
occurrence dates is carried out by
considering the data uncertainty.

* A Gaussian mixture model with 3
components is fitted to the resampled
earthquake inter-arrival data.
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Gaussian Mixture
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Future Relative Sea Level Rise

* The crust is in motion. Many locations in Canada experience uplift because of

glacial isostatic adjustment, or postglacial rebound. This effect must be considered
when the sea level rise is evaluated (i.e., the sea level rise solely due to climate

change is reduced).
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GPS-derived vertical crustal motion ME’%‘? 4=

for Canada and surrounding regions

James et al.
(2021)
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Relative Sea Level Rise in Tofino

« James et al. (2021) produced the
national relative sea level projections
for Canada based on the Fifth
Assessment Report of the
Intergovernmental Panel on Climate
Change (IPCC-ARS) by accounting for
the vertical land motion for Canada
based on GPS observations.

* |n Tofino, +0.7 m relative sea level rise
can be expected under the RCP8.5-
Upper scenario.
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Tidal Levels in Tofino

« A tidal monitoring station has been operational in Tofino since 1909.

* The hourly tidal data vary
between -2 m and +2 m
with respect to the long-
term average tidal level.

* Assuming the tidal
fluctuation remains similar
in the future, the
fluctuating tide can be
sampled from the hourly
tide data in Tofino.
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Multi-hazard Risk Framework



Earthquake Risk
Assessment for Non-
tsunamigenic Events

« Earthquake hazards due to non-
tsunamigenic events are evaluated
using the Geological Survey of Canada
model.

 For Tofino, hazard contributions from
megathrust Cascadia subduction
events are dominant compared with
crustal and inslab events.

(a) Earthquake Catalog

(b) Seismic Source Model
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{ (a) Stochastic Rupture Model ) (b) Tsunami Inundation Model

- Statistical scaling relationships for fault geometry and earthquake slip - High-resolution and high-quality bathymetry and elevation data
- Earthquake slip synthesis and asperity constraints - Coseismic deformation profiles based on Okada equations

C u | u
O n d t - Nonlinear shallow water equations for tsunami propagation and inundation
I I u I Realization 1 L Realization N
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- Population data (age profile) - Building exposure data and building cost information
- Building data (building material, number of story, & construction year) - Tsunami fragility functions for different building types and damage states
- Infrastructure data (roads, electricity grids, & water distribution) - Integration of tsunami inundation hazards with tsunami fragility functions
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5-m grids) for many stochastic

-
(" (d) Tsunami Fragility Model ) . (f) Conditional Tsunami Risk Distributions with Different Tidal Levels .
S O u rce S 2 O O O ) . - Emprical tsunami fragility functions in terms of inundation depth = - Conditional tsunami risk distributions for different magnitudes
- Different damage states : - Tsunami loss to buildings and tsunami inundation impacts to roads
[ - Effects of tidal levels and relative sea level rise
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Probabilistic Tsunami Risk
Analysis for Time-dependent
Hazards and Nonstationary
Sea Levels

* The long-term multi-hazard risk assessment
requires the integration of time-dependent
earthquake hazards, non-tsunamigenic
sources, tidal variation, and sea level rise
effects.

 The final output can be expressed as an
exceedance probability curve for a risk
estimate of interest (e.g., multi-hazard loss
for a building portfolio).

[ (a) Earthquake Occurrence & Magnitude Model ]

- Temporal occurrence model (e.g., Gaussian mixture model)
- Magnitude frequency distribution

Original distribution 1 \

¢ o Update distribution of inter-arrival time
of inter-arrival time

given no observation of a major
event since the previous event

(b) Tidal Variation & Relative Sea Level Rise

- Sampling of a tidal level from the tide level data in Tofino

- Sampling of a relative sea level rise by considering a different
RCP scenario for a given calendar time
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(c) Conditional Tsunami Risk Distributions with Different Tidal Levels
- Conditional tsunami risk distributions for different magnitudes
- Tsunami loss to buildings and tsunami inundation impacts to roads
- Effects of tidal levels and relative sea level rise
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- (d) Stochastic Event Catalog - [ (e) Nonstationary Tsunami Risk Assessment ]
- For each event in a stochastic catalog, assign the event occurrence - Exceedance probability curve based on time-dependent
time (f), earthquake magnitude (m), sea level (s), and then obtain a earthquake hazards, tidal variation, and relative sea level rise
tsunami loss (/).
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Result Part 1:

Multi-hazard Risk Assessments

- Shaking vs Inundation & Non-
tsunamigenic vs Tsunamigenic Sources -



Multi-hazard Exceedance Probability (Risk) Curves

_ _ _ Current time (elapsed time of 323 years)
» Multi-hazard risk curves are obtained by

10-2

considering the average tide conditions. | —— Multi-hazard _
—— Non-Cascadia shaking |
* The risk curves are decomposed into 9 — g::g:g::-fshuank;ﬁ
non-tsu_namllgenlc earthqua_lke risks, % sl GR magnitude
tsunamigenic earthquake risks, and 2 e . 7T Uniform magnitude 1
tsunami risks. 5
* The Cascadia earthquake risks are most Tg
significant due to the proximity to the 5 104}
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* The Cascadia tsunami risks are |
approximately half of the Cascadia o g
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Multi-hazard Maps for Return Period of 1000 years
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Result Part 2:
Long-term Tsunami Risk

Assessments

- Time-dependent Hazards & Tidal and
Relative Sea Level Rise Effects -



Effects of Tidal Levels on
Tsunami Inundation

» Tidal levels can have major impacts on
tsunami inundations.

* For two M9 scenarios, tsunami
inundation results for three tidal levels
(0 m, 1T m, and 2 m) are shown.

* The effects of tidal levels on inundation
extent are nonlinear (even though the
effects on the wave amplitude are linear
and monotonic).
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Effects of Elapsed
Time on Tsunami
Risk Metrics

* Similarly to the tsunami risk
curves, tsunami risk metrics,
such as annual probability of
loss occurrence, mean tsunami
loss, and tsunami loss at 0.001
and 0.0004 exceedance
probability level (value at risk),
Increases gradually.
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Effects of Elapsed
Time & Tidal Level
on Tsunami Risk

Curves

» The combined tidal effect (tidal
variation and relative sea level
rise) can have noticeable
impacts (blue vs red).

* The conventional time-
dependent hazard together with
a higher-than-average tidal level
serves well as conservative
estimate presently. This is not
guaranteed for a future situation.
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Cascading and Compounding
Multi-hazards for Coastal Communities

* The developed multi-hazard tsunami risk model can be useful for various risk
management decisions. It can generate extreme multi-nazard scenarios.

» Hydroclimate risks (coastal flooding) and other hazards (landslides and
aftershocks) can be added. The interaction among the multiple hazards must be
characterized.

Componding disaster scenario 1: Componding disaster scenario 2:
Storm surge precedes earthquake and tsunami Earthquake and tsunami precede storm surge
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