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Cascadia tsunami source models
should be informed by geologic
knowledge

* Using geophysical observations at multiple
scales, we map strain accumulation & fault zone
structure, and infer fault properties

* Probabilistic approaches to tsunami source
models require logic trees and weighting factors
— what is more or less likely to occur?
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IMPROVED CASCADIA EARTHQUAKE SOURCE MODELS FOR TSUNAMI
HAZARD ASSESSMENT

By Matthew Sypus and Kelin Wang?
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New source models for PTHA
October, 2024
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New work presented here was used as input to
these source model geometries and to the logic

tree weighting

Cascadia Sources Working Group (CSWG)

CASIE2]1 Team



First step: Geodetic strain accumulation at Cascadia

125° W

(d) Schmalzle et al. (2014)
Gamma model

(e) Schmalzle et al. (2014)
Gaussian model

=
o

© © © o ©
o N B~ OO
Locking Ratio

126°W 124°W 126°W 124°W

Schmalzle et al., 2014

48° N

45° N

42° N

122° W

»
20 + 1 mmyr’
—0

Model
——-

Cascadia lgest-fi

t model
~

-'.' oy

Py
i #
) AR N, o
4 P% 28
'-.x: Q ; km _C
7y Fl 100

Stress shadow
(unlocked but not slipping)

Frictionally locked

:— Slip rate deficit (coupling) ratio

0 0.5 1.0

*  Widest, most-locked patch is
off Washington

* Up-dip zone might be
“effectively locked” ... or just
locked

Lindsey et al., 2021
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Recent on-land geodetic
inversions affirm down-dip
limits of substantial strain
accumulation lie entirely
offshore

* Gap between ETS zone and
0.2 locking contour persists

* Wide patch off Washington
matches plate interface
geometry and character

Sherrill et al., 2024
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Most models of megathrust
geometry use a smoothed and
simplified surface, but we know
there’s plenty of real variability

All of these vary in strike and/or dip:

* Paleoseismic evidence

* Geodetic locking

* Structural geometries of wedge
* |nput basement topography

* Convergence rate



New seismic reflection imaging: the
CASIE21 experiment

Carbotte et al., 2024 - and many other papers in review and in preparation
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Comprehensive seismic reflection imaging of the offshore CSZ
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New maps of top of crust and plate boundary for seismogenic zone
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Segmentation in paleo-rupture
Slab 2.0 Hayes et al (2018) Plate Interface fault (Carbotte et al., 2024) and ETS (Wang and Trehu, 2016)
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O 4 geometrically distinct segments bounded by faults/tears in lower plate
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O Vancouver Island to WA segment: flatter and smoother fault- conditions more
favorable for large EQ
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What is the role of splay
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Where does the slip go in megathrust earthquakes? Which
faults participate?

deformation Quinault
front Ridge backstop

| incoming sediment section ! outer wedge | Tower slope | inner accretionary wedge
terrace

forearc basin

20 km

Line 4 off Grays Harbor region (Webb, 2017)

* s there actually a “mega-splay” faulte
* How far out to the deformation front does fast slip go?

*  What about all the other splay faults®



These unknowns have very real implications for policy in the
Pacific Northwest: planning scenarios for tsunami hazards are
based on available geoscience

Emergency planners in
Oregon and Washington
use different selected
scenarios from a set
dubbed S, M, L, XL, XXL,
with and without a

Seaward edge
of megathrust
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Tsunami
inundation *
scenarios for
Bandon, OR
ranging from

M8.7 — M9.1
Witter et al. (2013) models &
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Washington: megasplay
faults are covered by
undeformed sediments

* Lines off Olympic
peninsula, JdF Strait
show faults sealed by
younger sediments

* Transition northward to
the Vancouver Island
pattern, with plausible
active megasplay fault

Lucas et al., in review

deep seafloor
channel
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thick
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Off Vancouver Island, some
large-scale faults do branch to
surface

TRANSITION INNER WEDGE

* Evidence of potential megasplay-
style fault here, seaward of
previously mapped-position

\d A4

* Near-surface recent activity is S , Y
difficult to evaluate because we
don’t have high-resolution
complementary imaging

Lucas et al., in review
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Do the other splay faults slip coseismically?

deformation Quinault
front Ridge backstop
| | | | forearc basin |
I incoming sediment section | outer wedge | lower slope | inner accretionary wedge !
terrace

20 k
COAST line 4 off Grays Harbor region (Webb, 2017) -
Decollement is the plate boundary, and lies ~3 km below the surface right at the deformation front
0 km
Splay faults are all candidates for co-seismic slip as well CASIE21 line PDO6 (in'rer Y Madeleine Lucas)

s o, A

o=t
—




We conduct joint interpretation of near surface (<1 km) and deeper (<10 km)
seismic reflection imaging

CASIE21 PDO6B

Ledeczi et al,,
2024




We conduct joint interpretation of near surface (<1 km) and deeper (<10 km)

seismic reflection imaging
1 2.0

2.2 Higher resolution

sparker seismic
data
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Ledeczi et al,,
2024




We conduct joint interpretation of near surface (<1 km) and deeper (<10 km)

seismic reflection imaging
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We conduct joint interpretation of near surface (<1 km) and deeper (<10 km)
seismic reflection imaging
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* New data resolution allows to discriminate faults
which are actually active

* Previous work has identified similar faults, but all were

called active

* Partitioning of recent activity into “active domain’
and older activity into “inactive domain”

e Active domain < 30 km wide

* |nactive domain 10 to 40 km wide

Ledeczi et al., 2024



Sedimentary History

e 4

Inactive domain:
inactive faults buried
by postdeformational

sediments

TWTT (sec)
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Faults in the active domain are candidates for recent (and
therefore future) coseismic slip

* During megathrust events, shallow slip is likely distributed onto
multiple landward-vergent splay faults within the active domain of
the outer wedge

* The inner wedge and the inactive domain move as a rigid block

outer wedge inner wedge

inactive domain

frontal coseismic slip!

thrust Ctive splay faults

/TN

Incoming

sediments \
|

Oceanic basement

Ledeczi et al., 2024




Proposed new paradigm for
surface faulting offshore

* There is only patchy evidence at best for a
major megasplay fault — current tsunami
scenarios need re-evaluation

* Slip is likely to occur on multiple shallow
splay faults in the outermost ~ 30 km,
which may add to seafloor displacement

* These results are being used by the
earthquake and tsunami modeling groups
in CoPes Hub and influenced ASCE model

development
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How likely is fast slip to the deformation front?

deformation Quinault
front Ridge backstop
| | | | forearc basin |
I incoming sediment section | outer wedge | lower slope | inner accretionary wedge !
terrace

e ——— —"

20 km

COAST line 4 off Grays Harbor region (Webb, 2017)

Decollement is the plate boundary, and lies ~3 km below the surface right at the deformation front

0 km

Splay faults are all candidates for co-seismic slip as well CASIE21 line PDOG (interp by Madeleine Lucas)




Cascadia thermal models agree that the 1400
temperature at the base of the sediment section 1200
at the deformation front exceeds ~150°C O —— — , 1000
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Are the rocks lithified?

Seismic interval velocity from horizon-based tomography for Prestack Depth Migration
COAST Line 4
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Decollement at the front is high Vp: > 4000 m/s
PSDM by Susanna Webb, 2017



Is seismogenic slip to the deformation |8
front likely?e YES \

/SOVANEO
Fracture Zone

In the landward vergent zone at the deformation front, the megathrust
is ~3 kilometers deep and at 160 - 180° C or more.

There’s little to no evidence for elevated pore pressure, seismic
velocity is high, and porosity is low. It’s rock, not sediment.

For the quartz & feldspar (+clay) lithology along the fault, conditions
are therefore met for likely frictional locking and rate-state instability.

This is true of conditions on the splay faults at depth as well.

Locking to the “trench” is much more likely than not ... and
slip to the ‘““trench” is extremely likely.

Walton et al., 2021
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