

Tsunami Evacuation Planning in Washington State

Elyssa Tappero *Tsunami Program Manager* Washington Emergency Management Division

Tsunami Modeling in Washington

Tsunami inundation maps

CSZ L1, Seattle Fault Zone, Alaska Aleutian Subduction Zone scenarios

Tsunami current velocity maps CSZ L1, Seattle Fault Zone, Alaska Aleutian Subduction Zone scenarios

Tsunami evacuation walk maps CSZ L1 scenario

Tsunami Evacuation Route Wayfinding Signs

Tsunami Evacuation Route Wayfinding Assessment

- Covered all locations with tsunami pedestrian evacuation walk maps as of 2022; 28 communities and 1,055+ miles of evacuation routes total
- University of Washington students captured location data, took pictures, and documented condition of signs and paths
- Recommended new signs to fill line-ofsight for all routes
- Data organized by sign type and priority and compiled into Google MyMaps

Evacuation Route Wayfinding Project Findings

Wayfinding Project Results and Deliverables

- In total, more than 1,700 new signs were recommended in the assessed communities for robust, effective tsunami evacuation along our coasts
- Each community received the created Google MyMaps for their respective jurisdictions and all associated data
- WA EMD provides tsunami signs free of charge to local jurisdictions as funding allows
- Wayfinding methodology document in progress
 - Provides a proven step-by-step process for approaching tsunami wayfinding within your community
 - Draws on best practices from this project and from other US states and territories

Getting Creative with Signage

But what if evacuation out of the inundation zone before the first waves of a local tsunami arrive simply isn't possible for a community?

> In some places a slow walk may not be fast enough to evacuate before waves arrive. In these cases a faster evacuation pace will be necessary. Some areas may require vertical evacuation structures for successful evacuation.

WA State Vertical Evacuation Needs Assessment

- Completed in 2021, built off Project Safe Haven begun in 2009
- Based on 2010 census population, does not include daytime visitors or tourists
- Scenario: M9.0 CSZ earthquake and tsunami with 5-6 minutes of shaking. People will have 15 minutes or less to get to high ground.
- Discovered almost half of Pacific and Grays Harbor Counties' populations within the inundation zone are not within 15 minutes of high ground (over 32,000 people)
- Determined Washington needs between 58 and 80+ additional VES to support its permanent population

Study Area Summary Tables, by Option: 1-4 [total estimated population in tsunami zone = ~71,186]

61,441

21,049

86.3%

Based on 2010 census data; does not account for tourists or other visitors

70,013

OPTION 1							
# of VES	Minimum VES Capacity Need	% of People Within 15 Minutes to High Ground or VES	# of People Within 15 Minutes to High Ground or VES	% of People <u>Not</u> Within 15 Minutes to High Ground or VES	# of People <u>Not</u> Within 15 Minutes of High Ground or VES	% of People Within 25 Minutes to High Ground or VES	# of People Within 25 Minutes to High Ground or VES
N/A	N/A	54.9%	39,115	45.1%	32,073	66.4%	47,282
OPTION 3							
# of VES	Minimum VES Capacity Need	% of People Within 15 Minutes to High Ground or VES	# of People Within 15 Minutes to High Ground or VES	% of People <u>Not</u> Within 15 Minutes to High Ground or VES	# of People <u>Not</u> Within 15 Minutes of High Ground or VES	% of People Within 25 Minutes to High Ground or VES	# of People Within 25 Minutes to High Ground or VES
82	22,804	87.0%	61,959	13.0%	9,227	99.2%	70,603
OPTION 4							
# of VES	Minimum VES Capacity Need	% of People Within 15 Minutes to High Ground or VES	# of People Within 15 Minutes to High Ground or VES	% of People <u>Not</u> Within 15 Minutes to High Ground or VES	# of People <u>Not</u> Within 15 Minutes of High Ground or VES	% of People Within 25 Minutes to High Ground or VES	# of People Within 25 Minutes to High Ground or VES

13.7%

9,747

98.4%

Current and Pending VES in Washington

Ocosta Elementary

- Completed in 2016
- First VES in North America
- Funded through school bond approved by 70% of voters
- Shoalwater Bay Tower
 - Completed in 2022
 - Second VES in WA; first standalone tower design in US
 - First Tribal VES, first federally funded VES
- Ocean Shores, WA
 - Funding awarded, in progress
- Westport, WA
 - Funding awarded, in progress

Funding VES: The Biggest Hurdle

BRIC (Building Resilient Infrastructure and Communities)

• Pass-thru and reimbursement-based grant program from FEMA for government entities and special purpose districts with FEMA-approved Hazard Mitigation Plans

OSPI School Seismic Safety Grant Program

- For full funding or to cover local match for FEMA grants
- Focused on K-12 public schools needing earthquake retrofits, vertical evacuation, and/or complete rebuilding

OSPI School Construction Assistance Program

• Potential avenue for VES funding, could also supplement a school VES project by covering other costs

Tsunami VES Resources

Mil.wa.gov/tsunami

- New 2024 edition of the Manual for Tsunami Vertical Evacuation Structures
- 8 Phases Process Checklist
- PowerPoint Presentation
- VES gap assessments for Grays Harbor County, Pacific County, and Clallam County
- Historical Project Safe Haven documents

2nd Edition, September 2024

Tsunami Maritime Response and Mitigation Strategies

Ongoing work – WA EMD and WGS produce one grant-funded strategy per year

- Completed: Port of Bellingham, Westport Marina (Port of Grays Harbor), Port of Neah Bay
- In progress: Eagle Harbor (Bainbridge Island), Port of Port Angeles

Best practices – built on work consolidated through the National Tsunami Hazard Mitigation Program and collaboration with the US Coast Guard

Comprehensive – Includes sections on tsunami maritime risk, tsunami alerts, protective action guidance for boaters, and recommended tsunami maritime response and mitigation actions

Multi-hazard approach – Emphasis on other coastal hazard tie-ins (sea level rise, storm surge, king tides, etc), especially for funding purposes

Tsunami Maritime Response and Mitigation Strategies

- Include higher resolution modeling for highest-risk tsunami scenarios
 - Site-specific maps of local waterways (inundation, current velocity, drawdown)
 - Graphs with estimated wave arrival times, timing of largest waves and largest drawdown
 - Current velocity and modeled water depth over time

Institute for Hazard Mitigation Planning and Research Resilient and Safe Communities

Elyssa Tappero (she/they) *Tsunami Program Manager* WA Emergency Management Division elyssa.tappero@mil.wa.gov Check us out! mil.wa.gov/tsunami

