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Sediment permeability: 10-20 – 10-16 m2

Igneous crust permeability: 10-13 – 10-10 m2

Sun et al. (2021)

Scientific Objectives:
• Defining Cascadia subduction zone (CSZ) megathrust locking state
• Studying interplay between tectonically active plate boundaries and CSZ
• Studying rheology of the lithosphere-asthenosphere system
• Opportunity for real-time observation with ONC’s NEPTUNE observatory
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Fig 5. Borehole fluid pressure 
anomalies associated with the 1999 
northern Juan de Fuca (JdF) Ridge 
spreading event.

Davis et al. (2001)

• Seismic receiver function observations suggest a widespread LAB for the entire JdF plate

• Observations of deformation following several large megathrust earthquakes and 
modelling study suggest a thin and weak LAB (viscosity <1×1017 Pa s) – expected to 
facilitate lithospheric stress transfer over large distances (Sun et al., 2024).

• A rapid Pf increase, followed 
by a slower rise and then a 
much slower decay

• Different characteristic times 
between sites

• Signals were explained by 
hydraulic diffusion, but the 
role of viscoelastic stress 
transfer deserves further 
study.

• 1-hr sampling rate at that 
time; much higher rate (1 
s.p.s.) nowadays with cable 
connection

Pf-strain coefficient 
= 5 kPa/µstrain
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Fig 1. Upper: Map of the northern Juan de Fuca (JdF) plate and Cascadia subduction 
zone (CSZ) showing existing and proposed borehole observatory locations; Lower: 
Schematic illustration of using a network of borehole CORK observatories to track plate 
motion and subduction.

Fig 2. Seismic sections showing borehole locations, local geologic conditions, and targeted 
monitoring depth. Fig 1 shows profile locations. Upper-right: Configurations of proposed borehole 
(CORK) observatories.

Fig 3. Global map showing site locations of all existing CORK and LTBMS borehole 
observatories. Fig 4. Examples of CORK fluid pressure signals of earthquakes, spontaneous or triggered SSEs, 

and (possibly) inter-seismic strain accumulation. Many other examples exist (e.g., Araki et al., 
2017). Upper-right: Concept of using formation fluid pressure to track volumetric strain change.
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Seismic Receiver Functions – Rychert et al. (2018)
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Fig 6. Recent studies 
of the Lithosphere-
Asthenosphere 
Boundary (LAB) 
beneath JdF raise 
important new 
geodynamics 
questions that need to 
be addressed by our 
proposed borehole 
observatory network. 
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